Cargando…

Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1

Extracellular matrices contain fibril-like polymers often organized in parallel arrays. Although their role in morphogenesis has been long recognized, it remains unclear how the subcellular control of fibril synthesis translates into organ shape. We address this question using the Arabidopsis sepal...

Descripción completa

Detalles Bibliográficos
Autores principales: Mollier, Corentin, Skrzydeł, Joanna, Borowska-Wykręt, Dorota, Majda, Mateusz, Bayle, Vincent, Battu, Virginie, Totozafy, Jean-Chrisologue, Dulski, Mateusz, Fruleux, Antoine, Wrzalik, Roman, Mouille, Grégory, Smith, Richard S., Monéger, Françoise, Kwiatkowska, Dorota, Boudaoud, Arezki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391631/
https://www.ncbi.nlm.nih.gov/pubmed/37352099
http://dx.doi.org/10.1016/j.celrep.2023.112689
_version_ 1785082754131558400
author Mollier, Corentin
Skrzydeł, Joanna
Borowska-Wykręt, Dorota
Majda, Mateusz
Bayle, Vincent
Battu, Virginie
Totozafy, Jean-Chrisologue
Dulski, Mateusz
Fruleux, Antoine
Wrzalik, Roman
Mouille, Grégory
Smith, Richard S.
Monéger, Françoise
Kwiatkowska, Dorota
Boudaoud, Arezki
author_facet Mollier, Corentin
Skrzydeł, Joanna
Borowska-Wykręt, Dorota
Majda, Mateusz
Bayle, Vincent
Battu, Virginie
Totozafy, Jean-Chrisologue
Dulski, Mateusz
Fruleux, Antoine
Wrzalik, Roman
Mouille, Grégory
Smith, Richard S.
Monéger, Françoise
Kwiatkowska, Dorota
Boudaoud, Arezki
author_sort Mollier, Corentin
collection PubMed
description Extracellular matrices contain fibril-like polymers often organized in parallel arrays. Although their role in morphogenesis has been long recognized, it remains unclear how the subcellular control of fibril synthesis translates into organ shape. We address this question using the Arabidopsis sepal as a model organ. In plants, cell growth is restrained by the cell wall (extracellular matrix). Cellulose microfibrils are the main load-bearing wall component, thought to channel growth perpendicularly to their main orientation. Given the key function of CELLULOSE SYNTHASE INTERACTIVE1 (CSI1) in guidance of cellulose synthesis, we investigate the role of CSI1 in sepal morphogenesis. We observe that sepals from csi1 mutants are shorter, although their newest cellulose microfibrils are more aligned compared to wild-type. Surprisingly, cell growth anisotropy is similar in csi1 and wild-type plants. We resolve this apparent paradox by showing that CSI1 is required for spatial consistency of growth direction across the sepal.
format Online
Article
Text
id pubmed-10391631
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-103916312023-08-02 Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1 Mollier, Corentin Skrzydeł, Joanna Borowska-Wykręt, Dorota Majda, Mateusz Bayle, Vincent Battu, Virginie Totozafy, Jean-Chrisologue Dulski, Mateusz Fruleux, Antoine Wrzalik, Roman Mouille, Grégory Smith, Richard S. Monéger, Françoise Kwiatkowska, Dorota Boudaoud, Arezki Cell Rep Article Extracellular matrices contain fibril-like polymers often organized in parallel arrays. Although their role in morphogenesis has been long recognized, it remains unclear how the subcellular control of fibril synthesis translates into organ shape. We address this question using the Arabidopsis sepal as a model organ. In plants, cell growth is restrained by the cell wall (extracellular matrix). Cellulose microfibrils are the main load-bearing wall component, thought to channel growth perpendicularly to their main orientation. Given the key function of CELLULOSE SYNTHASE INTERACTIVE1 (CSI1) in guidance of cellulose synthesis, we investigate the role of CSI1 in sepal morphogenesis. We observe that sepals from csi1 mutants are shorter, although their newest cellulose microfibrils are more aligned compared to wild-type. Surprisingly, cell growth anisotropy is similar in csi1 and wild-type plants. We resolve this apparent paradox by showing that CSI1 is required for spatial consistency of growth direction across the sepal. Cell Press 2023-06-22 /pmc/articles/PMC10391631/ /pubmed/37352099 http://dx.doi.org/10.1016/j.celrep.2023.112689 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Mollier, Corentin
Skrzydeł, Joanna
Borowska-Wykręt, Dorota
Majda, Mateusz
Bayle, Vincent
Battu, Virginie
Totozafy, Jean-Chrisologue
Dulski, Mateusz
Fruleux, Antoine
Wrzalik, Roman
Mouille, Grégory
Smith, Richard S.
Monéger, Françoise
Kwiatkowska, Dorota
Boudaoud, Arezki
Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1
title Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1
title_full Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1
title_fullStr Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1
title_full_unstemmed Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1
title_short Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1
title_sort spatial consistency of cell growth direction during organ morphogenesis requires cellulose synthase interactive1
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391631/
https://www.ncbi.nlm.nih.gov/pubmed/37352099
http://dx.doi.org/10.1016/j.celrep.2023.112689
work_keys_str_mv AT molliercorentin spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT skrzydełjoanna spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT borowskawykretdorota spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT majdamateusz spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT baylevincent spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT battuvirginie spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT totozafyjeanchrisologue spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT dulskimateusz spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT fruleuxantoine spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT wrzalikroman spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT mouillegregory spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT smithrichards spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT monegerfrancoise spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT kwiatkowskadorota spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1
AT boudaoudarezki spatialconsistencyofcellgrowthdirectionduringorganmorphogenesisrequirescellulosesynthaseinteractive1