Cargando…
Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method
In this study, steam explosion was employed as a modification process for rice bran insoluble dietary fiber (RBIDF) to improve the flavor adsorption and controlled release capacities of RBIDF. Results showed that the flavor adsorption ability of RBIDF was effectively improved due to the unfolding st...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391727/ https://www.ncbi.nlm.nih.gov/pubmed/37534307 http://dx.doi.org/10.1016/j.crfs.2023.100550 |
_version_ | 1785082782290018304 |
---|---|
author | Liu, Hongcheng Ainiwan, Dilinuer Liu, Yingxu Dong, Xiaolan Fan, Hongxiu Sun, Tong Huang, Pingyun Zhang, Shanshan Wang, Dawei Liu, Tingting Zhang, Yanrong |
author_facet | Liu, Hongcheng Ainiwan, Dilinuer Liu, Yingxu Dong, Xiaolan Fan, Hongxiu Sun, Tong Huang, Pingyun Zhang, Shanshan Wang, Dawei Liu, Tingting Zhang, Yanrong |
author_sort | Liu, Hongcheng |
collection | PubMed |
description | In this study, steam explosion was employed as a modification process for rice bran insoluble dietary fiber (RBIDF) to improve the flavor adsorption and controlled release capacities of RBIDF. Results showed that the flavor adsorption ability of RBIDF was effectively improved due to the unfolding structure, increased specific surface area and pore volume and exposure of more functional groups after steam explosion treatment. The mechanism of the flavor adsorption behavior of modified RBIDF was preliminarily explored using adsorption kinetics and isotherms combined with SEM and DSC analysis. Results showed that the Langmuir isotherm model and pseudo-second-order kinetic model yielded the best fit to the adsorption data, indicating monolayer adsorption of flavor onto the modified RBIDF, and the adsorption was mainly driven by chemisorption process. The flavor release profile of modified RBIDF was investigated by HS-SPME/GC-MS and E-nose. After long-time storage, the flavor compounds were retained at a higher concentration in the modified RBIDF compared with the untreated RBIDF, indicating that the steam explosion treatment prolonged the retention time and enhanced the retention and controlled release capacities of RBIDF for flavor compounds. This study provides indications for potential applications of steam explosion-modified RBIDF as a novel flavor delivery system and functional ingredient. |
format | Online Article Text |
id | pubmed-10391727 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103917272023-08-02 Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method Liu, Hongcheng Ainiwan, Dilinuer Liu, Yingxu Dong, Xiaolan Fan, Hongxiu Sun, Tong Huang, Pingyun Zhang, Shanshan Wang, Dawei Liu, Tingting Zhang, Yanrong Curr Res Food Sci Research Article In this study, steam explosion was employed as a modification process for rice bran insoluble dietary fiber (RBIDF) to improve the flavor adsorption and controlled release capacities of RBIDF. Results showed that the flavor adsorption ability of RBIDF was effectively improved due to the unfolding structure, increased specific surface area and pore volume and exposure of more functional groups after steam explosion treatment. The mechanism of the flavor adsorption behavior of modified RBIDF was preliminarily explored using adsorption kinetics and isotherms combined with SEM and DSC analysis. Results showed that the Langmuir isotherm model and pseudo-second-order kinetic model yielded the best fit to the adsorption data, indicating monolayer adsorption of flavor onto the modified RBIDF, and the adsorption was mainly driven by chemisorption process. The flavor release profile of modified RBIDF was investigated by HS-SPME/GC-MS and E-nose. After long-time storage, the flavor compounds were retained at a higher concentration in the modified RBIDF compared with the untreated RBIDF, indicating that the steam explosion treatment prolonged the retention time and enhanced the retention and controlled release capacities of RBIDF for flavor compounds. This study provides indications for potential applications of steam explosion-modified RBIDF as a novel flavor delivery system and functional ingredient. Elsevier 2023-07-20 /pmc/articles/PMC10391727/ /pubmed/37534307 http://dx.doi.org/10.1016/j.crfs.2023.100550 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Liu, Hongcheng Ainiwan, Dilinuer Liu, Yingxu Dong, Xiaolan Fan, Hongxiu Sun, Tong Huang, Pingyun Zhang, Shanshan Wang, Dawei Liu, Tingting Zhang, Yanrong Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method |
title | Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method |
title_full | Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method |
title_fullStr | Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method |
title_full_unstemmed | Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method |
title_short | Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method |
title_sort | adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391727/ https://www.ncbi.nlm.nih.gov/pubmed/37534307 http://dx.doi.org/10.1016/j.crfs.2023.100550 |
work_keys_str_mv | AT liuhongcheng adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT ainiwandilinuer adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT liuyingxu adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT dongxiaolan adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT fanhongxiu adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT suntong adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT huangpingyun adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT zhangshanshan adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT wangdawei adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT liutingting adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod AT zhangyanrong adsorptionandcontrolledreleaseperformancesofflavorcompoundsbyricebraninsolubledietaryfiberimprovedthroughsteamexplosionmethod |