Cargando…

Effective treatment of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles

Sentinel lymph node (SLN) metastasis is an important promoter of distant metastasis in breast cancer. Therefore, the timely diagnosis and precise treatment are crucial for patient staging and prognosis. However, the simultaneous diagnosis of metastasis and the implementation of imaging-guided SLN th...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Yanfeng, Yu, Xiang, Leng, Yuehong, Peng, Xingzhou, Wang, Junjie, Zhao, Yifan, Chen, Juan, Zhang, Zhihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391974/
https://www.ncbi.nlm.nih.gov/pubmed/37528426
http://dx.doi.org/10.1186/s12951-023-02026-7
Descripción
Sumario:Sentinel lymph node (SLN) metastasis is an important promoter of distant metastasis in breast cancer. Therefore, the timely diagnosis and precise treatment are crucial for patient staging and prognosis. However, the simultaneous diagnosis of metastasis and the implementation of imaging-guided SLN therapy is challenging. Here, we report a melittin-loaded and hyaluronic acid (HA)-conjugated high-density lipoprotein (HDL) mimic phospholipid scaffold nanoparticle (MLT-HA-HPPS), which dually-target to both breast cancer and its SLN and efficiently inhibit SLN metastasis in the LN metastasis model. The melittin peptide was successfully loaded onto HA-HPPS via electrostatic interactions, and MLT-HA-HPPS possesses effective cytotoxicity for breast cancer 4T1 cells. Moreover, the effective delivery of MLT-HA-HPPS from the primary tumor into SLN is monitored by NIR fluorescence imaging, which greatly benefits the prognosis and treatment of metastatic SLNs. After paracancerous administration, MLT-HA-HPPS can efficiently inhibit primary tumor growth with an inhibition rate of 81.3% and 76.5% relative to the PBS-treated control group and HA-HPPS group, respectively. More importantly, MLT-HA-HPPS can effectively inhibit the growth of the metastatic SLNs with an approximately 78.0%, 79.1%, and 64.2% decrease in SLNs weight than those in PBS, HA-HPPS, and melittin-treated mice, respectively. Taken together, the MLT-HA-HPPS may provide an encouraging theranostic of SLN drug delivery strategy to inhibit primary tumor progression and prevent SLN metastasis of breast cancer. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-023-02026-7.