Cargando…
Machine learning models using non-linear techniques improve the prediction of resting energy expenditure in individuals receiving hemodialysis
PURPOSE: Approximately 700,000 people in the USA have chronic kidney disease requiring dialysis. Protein-energy wasting (PEW), a condition of advanced catabolism, contributes to three-year survival rates of 50%. PEW occurs at all levels of Body Mass Index (BMI) but is devastating for those people at...
Autores principales: | Bailey, Alainn, Eltawil, Mohamed, Gohel, Suril, Byham-Gray, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392315/ https://www.ncbi.nlm.nih.gov/pubmed/37505893 http://dx.doi.org/10.1080/07853890.2023.2238182 |
Ejemplares similares
-
Current methods for developing predictive energy equations in maintenance dialysis are imprecise
por: Bailey, Alainn, et al.
Publicado: (2022) -
Comparison of Dietary Inflammatory Index Scores with Inflammatory and Anthropometric Metrics in Individuals Receiving Maintenance Hemodialysis
por: Poyourow, Nina, et al.
Publicado: (2022) -
Association of Serum Adipokines and Resting Energy Expenditure in Patients With Chronic Kidney Disease
por: Abi, Nanzha, et al.
Publicado: (2022) -
Machine Learning in Healthcare
por: Habehh, Hafsa, et al.
Publicado: (2021) -
Approximate Time to Steady-state Resting Energy Expenditure Using Indirect Calorimetry in Young, Healthy Adults
por: Popp, Collin J., et al.
Publicado: (2016)