Cargando…
Poster 179: Unsupervised Machine Learning to Identify Clinically Meaningful Subgroups in Patients Undergoing Arthroscopic Rotator Cuff Repair
OBJECTIVES: Rotator cuff tears are estimated to affect 20.7% of the population, with the prevalence increasing with age. Surgery is indicated after non-response to nonoperative treatment, with arthroscopic rotator cuff repair (ARCR) as the current standard for full thickness tears. Clinically signif...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392385/ http://dx.doi.org/10.1177/2325967123S00165 |