Cargando…
Modelling peptide–protein complexes: docking, simulations and machine learning
Peptides mediate up to 40% of protein interactions, their high specificity and ability to bind in places where small molecules cannot make them potential drug candidates. However, predicting peptide–protein complexes remains more challenging than protein–protein or protein–small molecule interaction...
Autores principales: | Mondal, Arup, Chang, Liwei, Perez, Alberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392694/ https://www.ncbi.nlm.nih.gov/pubmed/37529282 http://dx.doi.org/10.1017/qrd.2022.14 |
Ejemplares similares
-
Towards rational computational peptide design
por: Chang, Liwei, et al.
Publicado: (2022) -
Accelerating the Screening of Small Peptide Ligands by Combining Peptide-Protein Docking and Machine Learning
por: Codina, Josep-Ramon, et al.
Publicado: (2023) -
Protein–Ligand Docking in the Machine-Learning Era
por: Yang, Chao, et al.
Publicado: (2022) -
Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology
por: Hsin, Kun-Yi, et al.
Publicado: (2013) -
A machine learning approach for ranking clusters of docked protein‐protein complexes by pairwise cluster comparison
por: Pfeiffenberger, Erik, et al.
Publicado: (2017)