Cargando…
Visualizing the (Causal) Effect of a Continuous Variable on a Time-To-Event Outcome
Visualization is a key aspect of communicating the results of any study aiming to estimate causal effects. In studies with time-to-event outcomes, the most popular visualization approach is depicting survival curves stratified by the variable of interest. This approach cannot be used when the variab...
Autores principales: | Denz, Robin, Timmesfeld, Nina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392888/ https://www.ncbi.nlm.nih.gov/pubmed/37462467 http://dx.doi.org/10.1097/EDE.0000000000001630 |
Ejemplares similares
-
Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates
por: Burgess, Stephen, et al.
Publicado: (2018) -
Within-Person Variability Score-Based Causal Inference: A Two-Step Estimation for Joint Effects of Time-Varying Treatments
por: Usami, Satoshi
Publicado: (2022) -
Causal null hypotheses of sustained treatment strategies: What can be tested with an instrumental variable?
por: Swanson, Sonja A., et al.
Publicado: (2018) -
Estimation of time-varying causal effects with multivariable Mendelian randomization: some cautionary notes
por: Tian, Haodong, et al.
Publicado: (2023) -
E-values for effect heterogeneity and approximations for causal interaction
por: Mathur, Maya B, et al.
Publicado: (2022)