Cargando…
A comparison of the binding sites of antibodies and single-domain antibodies
Antibodies are the largest class of biotherapeutics. However, in recent years, single-domain antibodies have gained traction due to their smaller size and comparable binding affinity. Antibodies (Abs) and single-domain antibodies (sdAbs) differ in the structures of their binding sites: most signific...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392943/ https://www.ncbi.nlm.nih.gov/pubmed/37533864 http://dx.doi.org/10.3389/fimmu.2023.1231623 |
_version_ | 1785083057892491264 |
---|---|
author | Gordon, Gemma L. Capel, Henriette L. Guloglu, Bora Richardson, Eve Stafford, Ryan L. Deane, Charlotte M. |
author_facet | Gordon, Gemma L. Capel, Henriette L. Guloglu, Bora Richardson, Eve Stafford, Ryan L. Deane, Charlotte M. |
author_sort | Gordon, Gemma L. |
collection | PubMed |
description | Antibodies are the largest class of biotherapeutics. However, in recent years, single-domain antibodies have gained traction due to their smaller size and comparable binding affinity. Antibodies (Abs) and single-domain antibodies (sdAbs) differ in the structures of their binding sites: most significantly, single-domain antibodies lack a light chain and so have just three CDR loops. Given this inherent structural difference, it is important to understand whether Abs and sdAbs are distinguishable in how they engage a binding partner and thus, whether they are suited to different types of epitopes. In this study, we use non-redundant sequence and structural datasets to compare the paratopes, epitopes and antigen interactions of Abs and sdAbs. We demonstrate that even though sdAbs have smaller paratopes, they target epitopes of equal size to those targeted by Abs. To achieve this, the paratopes of sdAbs contribute more interactions per residue than the paratopes of Abs. Additionally, we find that conserved framework residues are of increased importance in the paratopes of sdAbs, suggesting that they include non-specific interactions to achieve comparable affinity. Furthermore, the epitopes of sdAbs are only marginally less accessible than those of Abs: we posit that this may be explained by differences in the orientation and compaction of sdAb and Ab CDR-H3 loops. Overall, our results have important implications for the engineering and humanization of sdAbs, as well as the selection of the best modality for targeting a particular epitope. |
format | Online Article Text |
id | pubmed-10392943 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103929432023-08-02 A comparison of the binding sites of antibodies and single-domain antibodies Gordon, Gemma L. Capel, Henriette L. Guloglu, Bora Richardson, Eve Stafford, Ryan L. Deane, Charlotte M. Front Immunol Immunology Antibodies are the largest class of biotherapeutics. However, in recent years, single-domain antibodies have gained traction due to their smaller size and comparable binding affinity. Antibodies (Abs) and single-domain antibodies (sdAbs) differ in the structures of their binding sites: most significantly, single-domain antibodies lack a light chain and so have just three CDR loops. Given this inherent structural difference, it is important to understand whether Abs and sdAbs are distinguishable in how they engage a binding partner and thus, whether they are suited to different types of epitopes. In this study, we use non-redundant sequence and structural datasets to compare the paratopes, epitopes and antigen interactions of Abs and sdAbs. We demonstrate that even though sdAbs have smaller paratopes, they target epitopes of equal size to those targeted by Abs. To achieve this, the paratopes of sdAbs contribute more interactions per residue than the paratopes of Abs. Additionally, we find that conserved framework residues are of increased importance in the paratopes of sdAbs, suggesting that they include non-specific interactions to achieve comparable affinity. Furthermore, the epitopes of sdAbs are only marginally less accessible than those of Abs: we posit that this may be explained by differences in the orientation and compaction of sdAb and Ab CDR-H3 loops. Overall, our results have important implications for the engineering and humanization of sdAbs, as well as the selection of the best modality for targeting a particular epitope. Frontiers Media S.A. 2023-07-18 /pmc/articles/PMC10392943/ /pubmed/37533864 http://dx.doi.org/10.3389/fimmu.2023.1231623 Text en Copyright © 2023 Gordon, Capel, Guloglu, Richardson, Stafford and Deane https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Gordon, Gemma L. Capel, Henriette L. Guloglu, Bora Richardson, Eve Stafford, Ryan L. Deane, Charlotte M. A comparison of the binding sites of antibodies and single-domain antibodies |
title | A comparison of the binding sites of antibodies and single-domain antibodies |
title_full | A comparison of the binding sites of antibodies and single-domain antibodies |
title_fullStr | A comparison of the binding sites of antibodies and single-domain antibodies |
title_full_unstemmed | A comparison of the binding sites of antibodies and single-domain antibodies |
title_short | A comparison of the binding sites of antibodies and single-domain antibodies |
title_sort | comparison of the binding sites of antibodies and single-domain antibodies |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392943/ https://www.ncbi.nlm.nih.gov/pubmed/37533864 http://dx.doi.org/10.3389/fimmu.2023.1231623 |
work_keys_str_mv | AT gordongemmal acomparisonofthebindingsitesofantibodiesandsingledomainantibodies AT capelhenriettel acomparisonofthebindingsitesofantibodiesandsingledomainantibodies AT guloglubora acomparisonofthebindingsitesofantibodiesandsingledomainantibodies AT richardsoneve acomparisonofthebindingsitesofantibodiesandsingledomainantibodies AT staffordryanl acomparisonofthebindingsitesofantibodiesandsingledomainantibodies AT deanecharlottem acomparisonofthebindingsitesofantibodiesandsingledomainantibodies AT gordongemmal comparisonofthebindingsitesofantibodiesandsingledomainantibodies AT capelhenriettel comparisonofthebindingsitesofantibodiesandsingledomainantibodies AT guloglubora comparisonofthebindingsitesofantibodiesandsingledomainantibodies AT richardsoneve comparisonofthebindingsitesofantibodiesandsingledomainantibodies AT staffordryanl comparisonofthebindingsitesofantibodiesandsingledomainantibodies AT deanecharlottem comparisonofthebindingsitesofantibodiesandsingledomainantibodies |