Cargando…

Discovering the mesoscale for chains of conflict

Conflicts, like many social processes, are related events that span multiple scales in time, from the instantaneous to multi-year development, and in space, from one neighborhood to continents. Yet, there is little systematic work on connecting the multiple scales, formal treatment of causality betw...

Descripción completa

Detalles Bibliográficos
Autores principales: Kushwaha, Niraj, Lee, Edward D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392960/
https://www.ncbi.nlm.nih.gov/pubmed/37533894
http://dx.doi.org/10.1093/pnasnexus/pgad228
Descripción
Sumario:Conflicts, like many social processes, are related events that span multiple scales in time, from the instantaneous to multi-year development, and in space, from one neighborhood to continents. Yet, there is little systematic work on connecting the multiple scales, formal treatment of causality between events, and measures of uncertainty for how events are related to one another. We develop a method for extracting causally related chains of events that addresses these limitations with armed conflict. Our method explicitly accounts for an adjustable spatial and temporal scale of interaction for clustering individual events from a detailed data set, the Armed Conflict Event & Location Data Project. With it, we discover a mesoscale ranging from a week to a few months and tens to hundreds of kilometers, where long-range correlations and nontrivial dynamics relating conflict events emerge. Importantly, clusters in the mesoscale, while extracted from conflict statistics, are identifiable with mechanism cited in field studies. We leverage our technique to identify zones of causal interaction around conflict hotspots that naturally incorporate uncertainties. Thus, we show how a systematic, data-driven, and scalable procedure extracts social objects for study, providing a scope for scrutinizing and predicting conflict and other processes.