Cargando…
A novel machine learning-based programmed cell death-related clinical diagnostic and prognostic model associated with immune infiltration in endometrial cancer
BACKGROUND: To explore the underlying mechanism of programmed cell death (PCD)-related genes in patients with endometrial cancer (EC) and establish a prognostic model. METHODS: The RNA sequencing data (RNAseq), single nucleotide variation (SNV) data, and corresponding clinical data were downloaded f...
Autores principales: | Xiong, Jian, Chen, Junyuan, Guo, Zhongming, Zhang, Chaoyue, Yuan, Li, Gao, Kefei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393255/ https://www.ncbi.nlm.nih.gov/pubmed/37534256 http://dx.doi.org/10.3389/fonc.2023.1224071 |
Ejemplares similares
-
Machine Learning for Endometrial Cancer Prediction and Prognostication
por: Bhardwaj, Vipul, et al.
Publicado: (2022) -
KNL1 is a prognostic and diagnostic biomarker related to immune infiltration in patients with uterine corpus endometrial carcinoma
por: He, Kang, et al.
Publicado: (2023) -
The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study
por: Chen, Chaoyue, et al.
Publicado: (2019) -
Expression of Programmed Cell Death-Ligands in Hepatocellular Carcinoma: Correlation With Immune Microenvironment and Survival Outcomes
por: Liao, Haotian, et al.
Publicado: (2019) -
Machine learning-based neddylation landscape indicates different prognosis and immune microenvironment in endometrial cancer
por: Li, Yi, et al.
Publicado: (2023)