Cargando…

Differential responses to double-stranded RNA injection and feeding in Mormon cricket (Orthoptera: Tettigoniidae)

The Mormon cricket, Anabrus simplex, is a flightless katydid, one of the major devastating rangeland pests in several states of the western United States. During the past few years, their sudden and periodic outbreaks into massive migratory bands caused significant economic losses to the rangeland f...

Descripción completa

Detalles Bibliográficos
Autores principales: Rana, Seema, Kang, Changsun, Allred, Julianne, Medina-Duran, Jorge Humberto, Canova, Alyssa, Sherry, Danielle, Woller, Derek A, Kim, Dongin, Song, Hojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393271/
https://www.ncbi.nlm.nih.gov/pubmed/37527468
http://dx.doi.org/10.1093/jisesa/iead063
Descripción
Sumario:The Mormon cricket, Anabrus simplex, is a flightless katydid, one of the major devastating rangeland pests in several states of the western United States. During the past few years, their sudden and periodic outbreaks into massive migratory bands caused significant economic losses to the rangeland forage and agricultural crops, particularly grain crops. Current population management methods rely heavily on broad-spectrum chemical insecticides, which could be toxic to nontargets, and even the targeted species might develop resistance in the long run. Therefore, we assessed the potential of RNA interference (RNAi)-based alternative management strategies that could supplement the current methods. In insects, RNAi efficiency varies with the method of double-stranded RNA (dsRNA) delivery. We tested 2 different methods of dsRNA delivery: injection and oral feeding of dsRNA. The results showed that Mormon crickets are sensitive to injection of dsRNA in a dose-dependent manner, but refractory to the oral feeding of dsRNA. Further, we confirmed the high nuclease activity in the insect midgut. In order to protect the dsRNA from the dsRNase activity and facilitate its uptake in the midgut, we encapsulated dsRNA inside poly lactic-co-glycolic acid (PLGA) nanoparticles and studied its release kinetics and RNAi efficiency by oral feeding. The release kinetics clearly suggested that the PLGA nanoparticle permeates from the insect digestive system to the hemolymph; however, it failed to induce an efficient RNAi response of the targeted genes. In conclusion, our findings suggest the different responses to dsRNA delivery methods in Mormon crickets, and further investigations involving dsRNA stability and its uptake mechanism are required to use RNAi as an alternative Mormon cricket population management strategy.