Cargando…
BRCA1-specific machine learning model predicts variant pathogenicity with high accuracy
Identification of novel BRCA1 variants outpaces their clinical annotation which highlights the importance of developing accurate computational methods for risk assessment. Therefore our aim was to develop a BRCA1-specific machine learning model to predict the pathogenicity of all types of BRCA1 vari...
Autores principales: | Khandakji, Mohannad, Habish, Hind Hassan Ahmed, Abdulla, Nawal Bakheet Salem, Kusasi, Sitti Apsa Albani, Abdou, Nema Mahmoud Ghobashy, Al-Mulla, Hajer Mahmoud M. A., Al Sulaiman, Reem Jawad A. A., Bu Jassoum, Salha M., Mifsud, Borbala |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393322/ https://www.ncbi.nlm.nih.gov/pubmed/37335020 http://dx.doi.org/10.1152/physiolgenomics.00033.2023 |
Ejemplares similares
-
Cancer genetics program: Follow‐up on clinical genetics and genomic medicine in Qatar
por: Al‐Bader, Salha Bujassoum, et al.
Publicado: (2018) -
Gene-specific machine learning model to predict the pathogenicity of BRCA2 variants
por: Khandakji, Mohannad N., et al.
Publicado: (2022) -
Prevalence and Genotype-Phenotype Correlation of Lynch Syndrome in a Selected High-Risk Cohort from Qatar’s Population
por: Sidenna, Mariem, et al.
Publicado: (2022) -
Rapid Maxillary Expansion Treatment in Patients with Cleft Lip and Palate: A Survey on Clinical Experience in the European Cleft Centers
por: Khdairi, Nadiajda, et al.
Publicado: (2023) -
Novel sensor for the determination of CA 15-3 in serum of breast cancer patients based on Fe–gallic acid complex doped in modified cellulose polymer thin films
por: AlGhamdi, Hind A., et al.
Publicado: (2023)