Cargando…

Influence of base material particle features on petrophysical properties of synthetic carbonate plugs

Rocks with representative physical and chemical properties are essential to understanding fluid-solid flow behaviors at the pore scale. In this way, studying the pore space characteristics is a key point for evaluating and providing petrophysical properties for distinct rock types, such as synthetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Arismendi Florez, Jhonatan Jair, Michelon, Mateus, Ulsen, Carina, Ferrari, Jean Vicente
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393636/
https://www.ncbi.nlm.nih.gov/pubmed/37539269
http://dx.doi.org/10.1016/j.heliyon.2023.e18219
Descripción
Sumario:Rocks with representative physical and chemical properties are essential to understanding fluid-solid flow behaviors at the pore scale. In this way, studying the pore space characteristics is a key point for evaluating and providing petrophysical properties for distinct rock types, such as synthetic rocks, with controlled and representative properties like natural ones. This work studies the petrophysical properties of synthetic carbonate plugs with a novel approach by correlating particle size, particle size fraction, and the morphology of particles with porosity and permeability, which could guide the scientific community to further forming of carbonate rocks with a controlled pore network. Results indicated that particle shape influenced the accommodation of particles in the porous space and, therefore, in the petrophysical properties, where an increase in particle size decreases porosity and increases permeability. Also, the obtained plugs showed the following petrophysical features: gas porosity from 10% to 17%, mercury porosity from 11% to 19%, gas permeability from 0.07 mD to 0.70 mD, and mercury permeability from 0.02 mD to 0.35 mD, providing important insight on controlling pore space in synthetic carbonate rocks.