Cargando…
Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients
AIMS: There are no comprehensive machine learning (ML) tools used by oncologists to assist with risk identification and referrals to cardio-oncology. This study applies ML algorithms to identify oncology patients at risk for cardiovascular disease for referrals to cardio-oncology and to generate ris...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393891/ https://www.ncbi.nlm.nih.gov/pubmed/37538144 http://dx.doi.org/10.1093/ehjdh/ztad031 |
_version_ | 1785083245862322176 |
---|---|
author | Al-Droubi, Samer S Jahangir, Eiman Kochendorfer, Karl M Krive, Marianna Laufer-Perl, Michal Gilon, Dan Okwuosa, Tochukwu M Gans, Christopher P Arnold, Joshua H Bhaskar, Shakthi T Yasin, Hesham A Krive, Jacob |
author_facet | Al-Droubi, Samer S Jahangir, Eiman Kochendorfer, Karl M Krive, Marianna Laufer-Perl, Michal Gilon, Dan Okwuosa, Tochukwu M Gans, Christopher P Arnold, Joshua H Bhaskar, Shakthi T Yasin, Hesham A Krive, Jacob |
author_sort | Al-Droubi, Samer S |
collection | PubMed |
description | AIMS: There are no comprehensive machine learning (ML) tools used by oncologists to assist with risk identification and referrals to cardio-oncology. This study applies ML algorithms to identify oncology patients at risk for cardiovascular disease for referrals to cardio-oncology and to generate risk scores to support quality of care. METHODS AND RESULTS: De-identified patient data were obtained from Vanderbilt University Medical Center. Patients with breast, kidney, and B-cell lymphoma cancers were targeted. Additionally, the study included patients who received immunotherapy drugs for treatment of melanoma, lung cancer, or kidney cancer. Random forest (RF) and artificial neural network (ANN) ML models were applied to analyse each cohort: A total of 20 023 records were analysed (breast cancer, 6299; B-cell lymphoma, 9227; kidney cancer, 2047; and immunotherapy for three covered cancers, 2450). Data were divided randomly into training (80%) and test (20%) data sets. Random forest and ANN performed over 90% for accuracy and area under the curve (AUC). All ANN models performed better than RF models and produced accurate referrals. CONCLUSION: Predictive models are ready for translation into oncology practice to identify and care for patients who are at risk of cardiovascular disease. The models are being integrated with electronic health record application as a report of patients who should be referred to cardio-oncology for monitoring and/or tailored treatments. Models operationally support cardio-oncology practice. Limited validation identified 86% of the lymphoma and 58% of the kidney cancer patients with major risk for cardiotoxicity who were not referred to cardio-oncology. |
format | Online Article Text |
id | pubmed-10393891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103938912023-08-03 Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients Al-Droubi, Samer S Jahangir, Eiman Kochendorfer, Karl M Krive, Marianna Laufer-Perl, Michal Gilon, Dan Okwuosa, Tochukwu M Gans, Christopher P Arnold, Joshua H Bhaskar, Shakthi T Yasin, Hesham A Krive, Jacob Eur Heart J Digit Health Original Article AIMS: There are no comprehensive machine learning (ML) tools used by oncologists to assist with risk identification and referrals to cardio-oncology. This study applies ML algorithms to identify oncology patients at risk for cardiovascular disease for referrals to cardio-oncology and to generate risk scores to support quality of care. METHODS AND RESULTS: De-identified patient data were obtained from Vanderbilt University Medical Center. Patients with breast, kidney, and B-cell lymphoma cancers were targeted. Additionally, the study included patients who received immunotherapy drugs for treatment of melanoma, lung cancer, or kidney cancer. Random forest (RF) and artificial neural network (ANN) ML models were applied to analyse each cohort: A total of 20 023 records were analysed (breast cancer, 6299; B-cell lymphoma, 9227; kidney cancer, 2047; and immunotherapy for three covered cancers, 2450). Data were divided randomly into training (80%) and test (20%) data sets. Random forest and ANN performed over 90% for accuracy and area under the curve (AUC). All ANN models performed better than RF models and produced accurate referrals. CONCLUSION: Predictive models are ready for translation into oncology practice to identify and care for patients who are at risk of cardiovascular disease. The models are being integrated with electronic health record application as a report of patients who should be referred to cardio-oncology for monitoring and/or tailored treatments. Models operationally support cardio-oncology practice. Limited validation identified 86% of the lymphoma and 58% of the kidney cancer patients with major risk for cardiotoxicity who were not referred to cardio-oncology. Oxford University Press 2023-05-08 /pmc/articles/PMC10393891/ /pubmed/37538144 http://dx.doi.org/10.1093/ehjdh/ztad031 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Article Al-Droubi, Samer S Jahangir, Eiman Kochendorfer, Karl M Krive, Marianna Laufer-Perl, Michal Gilon, Dan Okwuosa, Tochukwu M Gans, Christopher P Arnold, Joshua H Bhaskar, Shakthi T Yasin, Hesham A Krive, Jacob Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients |
title | Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients |
title_full | Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients |
title_fullStr | Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients |
title_full_unstemmed | Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients |
title_short | Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients |
title_sort | artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393891/ https://www.ncbi.nlm.nih.gov/pubmed/37538144 http://dx.doi.org/10.1093/ehjdh/ztad031 |
work_keys_str_mv | AT aldroubisamers artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT jahangireiman artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT kochendorferkarlm artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT krivemarianna artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT lauferperlmichal artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT gilondan artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT okwuosatochukwum artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT ganschristopherp artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT arnoldjoshuah artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT bhaskarshakthit artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT yasinheshama artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients AT krivejacob artificialintelligencemodellingtoassesstheriskofcardiovasculardiseaseinoncologypatients |