Cargando…
Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients
AIMS: There are no comprehensive machine learning (ML) tools used by oncologists to assist with risk identification and referrals to cardio-oncology. This study applies ML algorithms to identify oncology patients at risk for cardiovascular disease for referrals to cardio-oncology and to generate ris...
Autores principales: | Al-Droubi, Samer S, Jahangir, Eiman, Kochendorfer, Karl M, Krive, Marianna, Laufer-Perl, Michal, Gilon, Dan, Okwuosa, Tochukwu M, Gans, Christopher P, Arnold, Joshua H, Bhaskar, Shakthi T, Yasin, Hesham A, Krive, Jacob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393891/ https://www.ncbi.nlm.nih.gov/pubmed/37538144 http://dx.doi.org/10.1093/ehjdh/ztad031 |
Ejemplares similares
-
Framework for Classifying Explainable Artificial Intelligence (XAI) Algorithms in Clinical Medicine
por: Gniadek, Thomas, et al.
Publicado: (2023) -
Grounded in reality: artificial intelligence in medical education
por: Krive, Jacob, et al.
Publicado: (2023) -
Innovation of health data science curricula
por: Isola, Miriam, et al.
Publicado: (2022) -
Developmental Consequences of Restrictive Eating Disorders after Childhood Obesity: Two Case Reports
por: Kennedy, Samantha Fugate, et al.
Publicado: (2017) -
On the vacuum stability problem in gauge theories
por: Krive, I V, et al.
Publicado: (1976)