Cargando…

Electrical programmable multilevel nonvolatile photonic random-access memory

Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield re...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Jiawei, Gui, Yaliang, Nouri, Behrouz Movahhed, Ma, Xiaoxuan, Zhang, Yifei, Popescu, Cosmin-Constantin, Kang, Myungkoo, Miscuglio, Mario, Peserico, Nicola, Richardson, Kathleen, Hu, Juejun, Dalir, Hamed, Sorger, Volker J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393989/
https://www.ncbi.nlm.nih.gov/pubmed/37528100
http://dx.doi.org/10.1038/s41377-023-01213-3
_version_ 1785083266549678080
author Meng, Jiawei
Gui, Yaliang
Nouri, Behrouz Movahhed
Ma, Xiaoxuan
Zhang, Yifei
Popescu, Cosmin-Constantin
Kang, Myungkoo
Miscuglio, Mario
Peserico, Nicola
Richardson, Kathleen
Hu, Juejun
Dalir, Hamed
Sorger, Volker J.
author_facet Meng, Jiawei
Gui, Yaliang
Nouri, Behrouz Movahhed
Ma, Xiaoxuan
Zhang, Yifei
Popescu, Cosmin-Constantin
Kang, Myungkoo
Miscuglio, Mario
Peserico, Nicola
Richardson, Kathleen
Hu, Juejun
Dalir, Hamed
Sorger, Volker J.
author_sort Meng, Jiawei
collection PubMed
description Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/μm and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100× improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example.
format Online
Article
Text
id pubmed-10393989
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-103939892023-08-03 Electrical programmable multilevel nonvolatile photonic random-access memory Meng, Jiawei Gui, Yaliang Nouri, Behrouz Movahhed Ma, Xiaoxuan Zhang, Yifei Popescu, Cosmin-Constantin Kang, Myungkoo Miscuglio, Mario Peserico, Nicola Richardson, Kathleen Hu, Juejun Dalir, Hamed Sorger, Volker J. Light Sci Appl Article Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/μm and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100× improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example. Nature Publishing Group UK 2023-08-01 /pmc/articles/PMC10393989/ /pubmed/37528100 http://dx.doi.org/10.1038/s41377-023-01213-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Meng, Jiawei
Gui, Yaliang
Nouri, Behrouz Movahhed
Ma, Xiaoxuan
Zhang, Yifei
Popescu, Cosmin-Constantin
Kang, Myungkoo
Miscuglio, Mario
Peserico, Nicola
Richardson, Kathleen
Hu, Juejun
Dalir, Hamed
Sorger, Volker J.
Electrical programmable multilevel nonvolatile photonic random-access memory
title Electrical programmable multilevel nonvolatile photonic random-access memory
title_full Electrical programmable multilevel nonvolatile photonic random-access memory
title_fullStr Electrical programmable multilevel nonvolatile photonic random-access memory
title_full_unstemmed Electrical programmable multilevel nonvolatile photonic random-access memory
title_short Electrical programmable multilevel nonvolatile photonic random-access memory
title_sort electrical programmable multilevel nonvolatile photonic random-access memory
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393989/
https://www.ncbi.nlm.nih.gov/pubmed/37528100
http://dx.doi.org/10.1038/s41377-023-01213-3
work_keys_str_mv AT mengjiawei electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT guiyaliang electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT nouribehrouzmovahhed electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT maxiaoxuan electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT zhangyifei electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT popescucosminconstantin electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT kangmyungkoo electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT miscugliomario electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT pesericonicola electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT richardsonkathleen electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT hujuejun electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT dalirhamed electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory
AT sorgervolkerj electricalprogrammablemultilevelnonvolatilephotonicrandomaccessmemory