Cargando…
Role of hybrid nanofiller GNPs/Al(2)O(3) on enhancing the mechanical and tribological performance of HDPE composite
The unique mechanical properties and wear resistance of HDPE give it the potential as an alternative to frictional material. The current research focuses on using hybrid nanoparticles with various loading fillers to determine the best additive contents. The mechanical and tribological characteristic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394009/ https://www.ncbi.nlm.nih.gov/pubmed/37528218 http://dx.doi.org/10.1038/s41598-023-39172-9 |
Sumario: | The unique mechanical properties and wear resistance of HDPE give it the potential as an alternative to frictional material. The current research focuses on using hybrid nanoparticles with various loading fillers to determine the best additive contents. The mechanical and tribological characteristics were examined and evaluated. The HDPE nanocomposite samples containing 0.5, 1.0, 1.5, and 2.0 wt.% filling content of Al(2)O(3) nanoparticles (NPs) and 0.5, and 1.0 wt.% of graphene nanoplatelets (GNPs) were fabricated. The results showed a good enhancement in the mechanical and tribological properties of HDPE composites with the presence of nano additives. The HDPE nanocomposites recorded the best performance with a loading amount of 2.0 wt.% with an equal ratio of hybrid nanofiller Al(2)O(3) NPs and GNPs. |
---|