Cargando…

Transcranial random noise stimulation combined with cognitive training for treating ADHD: a randomized, sham-controlled clinical trial

Non-invasive brain stimulation has been suggested as a potential treatment for improving symptomology and cognitive deficits in Attention-Deficit/Hyperactivity Disorder (ADHD), the most common childhood neurodevelopmental disorder. Here, we examined whether a novel form of stimulation, high-frequenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Dakwar-Kawar, Ornella, Mairon, Noam, Hochman, Shachar, Berger, Itai, Cohen Kadosh, Roi, Nahum, Mor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394047/
https://www.ncbi.nlm.nih.gov/pubmed/37528107
http://dx.doi.org/10.1038/s41398-023-02547-7
Descripción
Sumario:Non-invasive brain stimulation has been suggested as a potential treatment for improving symptomology and cognitive deficits in Attention-Deficit/Hyperactivity Disorder (ADHD), the most common childhood neurodevelopmental disorder. Here, we examined whether a novel form of stimulation, high-frequency transcranial random noise stimulation (tRNS), applied with cognitive training (CT), may impact symptoms and neural oscillations in children with ADHD. We conducted a randomized, double-blind, sham-controlled trial in 23 unmedicated children with ADHD, who received either tRNS over the right inferior frontal gyrus (rIFG) and left dorsolateral prefrontal cortex (lDLPFC) or sham stimulation for 2 weeks, combined with CT. tRNS + CT yielded significant clinical improvements (reduced parent-reported ADHD rating-scale scores) following treatment, compared to the control intervention. These improvements did not change significantly at a 3-week follow-up. Moreover, resting state (RS)-EEG periodic beta bandwidth of the extracted peaks was reduced in the experimental compared to control group immediately following treatment, with further reduction at follow-up. A lower aperiodic exponent, which reflects a higher cortical excitation/inhibition (E/I) balance and has been related to cognitive improvement, was seen in the experimental compared to control group. This replicates previous tRNS findings in adults without ADHD but was significant only when using a directional hypothesis. The experimental group further exhibited longer sleep onset latencies and more wake-up times following treatment compared to the control group. No significant group differences were seen in executive functions, nor in reported adverse events. We conclude that tRNS + CT has a lasting clinical effect on ADHD symptoms and on beta activity. These results provide a preliminary direction towards a novel intervention in pediatric ADHD.