Cargando…
Supervised machine learning models for depression sentiment analysis
INTRODUCTION: Globally, the prevalence of mental health problems, especially depression, is at an all-time high. The objective of this study is to utilize machine learning models and sentiment analysis techniques to predict the level of depression earlier in social media users' posts. METHODS:...
Autores principales: | Obagbuwa, Ibidun Christiana, Danster, Samantha, Chibaya, Onil Colin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394518/ https://www.ncbi.nlm.nih.gov/pubmed/37538396 http://dx.doi.org/10.3389/frai.2023.1230649 |
Ejemplares similares
-
Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques
por: Morapedi, Tshepang Duncan, et al.
Publicado: (2023) -
Semantic relational machine learning model for sentiment analysis using cascade feature selection and heterogeneous classifier ensemble
por: Yenkikar, Anuradha, et al.
Publicado: (2022) -
A supervised scheme for aspect extraction in sentiment analysis using the hybrid feature set of word dependency relations and lemmas
por: Bhamare, Bhavana R., et al.
Publicado: (2021) -
Deep learning for aspect-based sentiment analysis: a review
por: Zhu, Linan, et al.
Publicado: (2022) -
Automatic emotion recognition in healthcare data using supervised machine learning
por: Azam, Nazish, et al.
Publicado: (2021)