Cargando…
Nature-Inspired Surface Engineering for Efficient Atmospheric Water Harvesting
[Image: see text] Atmospheric water harvesting is a sustainable solution to global water shortage, which requires high efficiency, high durability, low cost, and environmentally friendly water collectors. In this paper, we report a novel water collector design based on a nature-inspired hybrid super...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394688/ https://www.ncbi.nlm.nih.gov/pubmed/37538294 http://dx.doi.org/10.1021/acssuschemeng.3c00760 |
Sumario: | [Image: see text] Atmospheric water harvesting is a sustainable solution to global water shortage, which requires high efficiency, high durability, low cost, and environmentally friendly water collectors. In this paper, we report a novel water collector design based on a nature-inspired hybrid superhydrophilic/superhydrophobic aluminum surface. The surface is fabricated by combining laser and chemical treatments. We achieve a 163° contrast in contact angles between the superhydrophilic pattern and the superhydrophobic background. Such a unique superhydrophilic/superhydrophobic combination presents a self-pumped mechanism, providing the hybrid collector with highly efficient water harvesting performance. Based on simulations and experimental measurements, the water harvesting rate of the repeating units of the pattern was optimized, and the corresponding hybrid collector achieves a water harvesting rate of 0.85 kg m(–2) h(–1). Additionally, our hybrid collector also exhibits good stability, flexibility, as well as thermal conductivity and hence shows great potential for practical application. |
---|