Cargando…
Commentary: Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2 by a machine learning approach
SARS-CoV-2 infection poses a significant risk increase for adverse pregnancy outcomes both from maternal and fetal sides. A recent publication in BMC Pregnancy and Childbirth presented a machine learning algorithm to predict this risk. This commentary will discuss potential implications and applicat...
Autores principales: | Salmeri, Noemi, Candiani, Massimo, Cavoretto, Paolo Ivo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394926/ https://www.ncbi.nlm.nih.gov/pubmed/37532988 http://dx.doi.org/10.1186/s12884-023-05864-3 |
Ejemplares similares
-
Endometriosis increases the risk of gestational diabetes: a meta-analysis stratified by mode of conception, disease localization and severity
por: Salmeri, Noemi, et al.
Publicado: (2023) -
Endometriosis and Impaired Placentation: A Prospective Cohort Study Comparing Uterine Arteries Doppler Pulsatility Index in Pregnancies of Patients with and without Moderate-Severe Disease
por: Salmeri, Noemi, et al.
Publicado: (2022) -
Maternal Arsenic Exposure and Gestational Diabetes: A Systematic Review and Meta-Analysis
por: Salmeri, Noemi, et al.
Publicado: (2020) -
Antibodies, epicenter of SARS-CoV-2 immunology
por: Pecetta, Simone, et al.
Publicado: (2021) -
Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2: a machine learning approach- a retrospective cohort study
por: Young, Dylan, et al.
Publicado: (2023)