Cargando…
Segmentation and counting of wheat spike grains based on deep learning and textural feature
BACKGROUND: Grain count is crucial to wheat yield composition and estimating yield parameters. However, traditional manual counting methods are time-consuming and labor-intensive. This study developed an advanced deep learning technique for the segmentation counting model of wheat grains. This model...
Autores principales: | Xu, Xin, Geng, Qing, Gao, Feng, Xiong, Du, Qiao, Hongbo, Ma, Xinming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394929/ https://www.ncbi.nlm.nih.gov/pubmed/37528413 http://dx.doi.org/10.1186/s13007-023-01062-6 |
Ejemplares similares
-
SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging
por: Misra, Tanuj, et al.
Publicado: (2020) -
Detecting spikes of wheat plants using neural networks with Laws texture energy
por: Qiongyan, Li, et al.
Publicado: (2017) -
Determination of wheat spike and spikelet architecture and grain traits using X-ray Computed Tomography imaging
por: Zhou, Hu, et al.
Publicado: (2021) -
Improving multi-scale detection layers in the deep learning network for wheat spike detection based on interpretive analysis
por: Yan, Jiawei, et al.
Publicado: (2023) -
Wheat ear counting using K-means clustering segmentation and convolutional neural network
por: Xu, Xin, et al.
Publicado: (2020)