Cargando…

Surface runoff and soil erosion from Nitisols and Ferralsols as influenced by different soil organic carbon levels under simulated rainfall conditions

Soil erosion poses a challenge to the environment and the sustainable use of natural resources, particularly in relation to agricultural production. The study aimed to assess the influence of different soil organic carbon (SOC) levels on runoff and soil erosion under varying levels of rainfall inten...

Descripción completa

Detalles Bibliográficos
Autores principales: Rugendo, Mercy K., Gichimu, Bernard M., Mugwe, Jayne N., Mucheru-Muna, Monicah, Mugendi, Daniel N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395127/
https://www.ncbi.nlm.nih.gov/pubmed/37539105
http://dx.doi.org/10.1016/j.heliyon.2023.e17684
Descripción
Sumario:Soil erosion poses a challenge to the environment and the sustainable use of natural resources, particularly in relation to agricultural production. The study aimed to assess the influence of different soil organic carbon (SOC) levels on runoff and soil erosion under varying levels of rainfall intensity. The study was conducted in pre-selected farmers' fields representing low, moderate and adequate SOC levels in Nitisols and Ferralsols. Two parallel experiments were set up in each type of soil using a split-plot layout arranged in Randomized Complete Block Design. The main plots were the different soil organic carbon levels while the sub-plots were the different simulated rainfall intensities. Rainfall simulation was then conducted to determine runoff and sediment losses on each soil type. The simulation was done using a land type sprinkler nozzle rainfall simulator (460 788 type) in an experimental plot of 1 m(2), fenced with corrugated iron sheets with a small opening left for runoff collection. Runoff and sediment losses were determined from the volume collected in the jar. The data was subjected to analysis of variance and significant mean differences were determined using Tukey’s Honest Test at a 95% confidence level. Pearson correlation was applied to assess the relationship between runoff volume and sediment loss. The results showed that Ferralsols recorded significantly higher runoff and sediment losses compared to Nitisols, by 60.27% and 53.14% respectively. However, adequate SOC level portrayed a significant effect in reducing erosion in both soil types, where it reduced runoff and sediment loss by 45.30% and 48.38% in Ferralsols and by 65.31% and 48.22% in Nitisols, respectively. In both soil types, runoff yield was positively correlated to rainfall intensity while sediment yield was inversely correlated with SOC levels. Therefore, the study recommends incorporation of organic matter to adequate levels in both soils, for reduced soil erosion.