Cargando…
A lncRNA-disease association prediction model based on the two-step PU learning and fully connected neural networks
Long non-coding RNAs (lncRNAs) have been shown to play a regulatory role in various processes of human diseases. However, lncRNA experiments are inefficient, time-consuming and highly subjective, so that the number of experimentally verified associations between lncRNA and diseases is limited. In th...
Autores principales: | Biyu, Hou, GuangWen, Tan, Ming, Zeng, Lixin, Guan, Mengshan, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395133/ https://www.ncbi.nlm.nih.gov/pubmed/37539215 http://dx.doi.org/10.1016/j.heliyon.2023.e17726 |
Ejemplares similares
-
Prediction of DNA Methylation based on Multi-dimensional feature encoding and double convolutional fully connected convolutional neural network
por: Hu, Wenxing, et al.
Publicado: (2023) -
The LncRNA Connectivity Map: Using LncRNA Signatures to Connect Small Molecules, LncRNAs, and Diseases
por: Yang, Haixiu, et al.
Publicado: (2017) -
lncRNA and gene looping: what’s the connection?
por: Shibayama, Youtaro, et al.
Publicado: (2014) -
Biological Activity
Predictions of Ligands Based on
Hybrid Molecular Fingerprinting and Ensemble Learning
por: Li, Mengshan, et al.
Publicado: (2023) -
Pu /
por: Ramírez, Armando
Publicado: (2003)