Cargando…
A generalized protein–ligand scoring framework with balanced scoring, docking, ranking and screening powers
Applying machine learning algorithms to protein–ligand scoring functions has aroused widespread attention in recent years due to the high predictive accuracy and affordable computational cost. Nevertheless, most machine learning-based scoring functions are only applicable to a specific task, e.g., b...
Autores principales: | Shen, Chao, Zhang, Xujun, Hsieh, Chang-Yu, Deng, Yafeng, Wang, Dong, Xu, Lei, Wu, Jian, Li, Dan, Kang, Yu, Hou, Tingjun, Pan, Peichen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395315/ https://www.ncbi.nlm.nih.gov/pubmed/37538816 http://dx.doi.org/10.1039/d3sc02044d |
Ejemplares similares
-
HawkRank: a new scoring function for protein–protein docking based on weighted energy terms
por: Feng, Ting, et al.
Publicado: (2017) -
A flexible data-free framework for structure-based de novo drug design with reinforcement learning
por: Du, Hongyan, et al.
Publicado: (2023) -
TB-IECS: an accurate machine learning-based scoring function for virtual screening
por: Zhang, Xujun, et al.
Publicado: (2023) -
ReMODE: a deep learning-based web server for target-specific drug design
por: Wang, Mingyang, et al.
Publicado: (2022) -
XLPFE: A Simple and Effective Machine Learning Scoring
Function for Protein–Ligand Scoring and Ranking
por: Dong, Lina, et al.
Publicado: (2022)