Cargando…
P21 Development of deep learning models for Sub-Cellular Fluctuation Imaging (SCFI): a 30 min antibiotic susceptibility test for urinary tract infections
BACKGROUND: We have developed a phenotypic and label-free antibiotic susceptibility test (AST) termed Sub-Cellular Fluctuation Imaging (SCFI) to address rising rates of antimicrobial resistance.(1) SCFI is an advanced machine-learning enabled microscope that monitors real-time fluctuations of bacter...
Autores principales: | Rama, S, Antognozzi, M, Szeremeta, W, Phonrat, K, Eley, A, Bermingham, C, Kyriakides, M, Newman, H, Bonney-Bhandal, K, Preece, J, Dorh, N, Dorh, J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395427/ http://dx.doi.org/10.1093/jacamr/dlad077.025 |
Ejemplares similares
-
P20 Rapid 15 min test to identify the three most common Gram-negative uropathogens in urinary tract infections
por: Rama, Sylvain, et al.
Publicado: (2023) -
Towards a Fully Automated Scanning Probe Microscope for Biomedical Applications
por: Szeremeta, Witold K., et al.
Publicado: (2021) -
Experimental and simulated response of ScFi detector
por: Yazkov, V V
Publicado: (2005) -
Investigation of systematic errors for analysis with DC and ScFi
por: Yazkov, V
Publicado: (2008) -
Dependence of breakup probability estimation on ScFi background
por: Yazkov, V V
Publicado: (2004)