Cargando…
Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning
Reliable and automated 3-dimensional (3D) plant shoot segmentation is a core prerequisite for the extraction of plant phenotypic traits at the organ level. Combining deep learning and point clouds can provide effective ways to address the challenge. However, fully supervised deep learning methods re...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395505/ https://www.ncbi.nlm.nih.gov/pubmed/37539075 http://dx.doi.org/10.34133/plantphenomics.0080 |
_version_ | 1785083591350288384 |
---|---|
author | Luo, Liyi Jiang, Xintong Yang, Yu Samy, Eugene Roy Antony Lefsrud, Mark Hoyos-Villegas, Valerio Sun, Shangpeng |
author_facet | Luo, Liyi Jiang, Xintong Yang, Yu Samy, Eugene Roy Antony Lefsrud, Mark Hoyos-Villegas, Valerio Sun, Shangpeng |
author_sort | Luo, Liyi |
collection | PubMed |
description | Reliable and automated 3-dimensional (3D) plant shoot segmentation is a core prerequisite for the extraction of plant phenotypic traits at the organ level. Combining deep learning and point clouds can provide effective ways to address the challenge. However, fully supervised deep learning methods require datasets to be point-wise annotated, which is extremely expensive and time-consuming. In our work, we proposed a novel weakly supervised framework, Eff-3DPSeg, for 3D plant shoot segmentation. First, high-resolution point clouds of soybean were reconstructed using a low-cost photogrammetry system, and the Meshlab-based Plant Annotator was developed for plant point cloud annotation. Second, a weakly supervised deep learning method was proposed for plant organ segmentation. The method contained (a) pretraining a self-supervised network using Viewpoint Bottleneck loss to learn meaningful intrinsic structure representation from the raw point clouds and (b) fine-tuning the pretrained model with about only 0.5% points being annotated to implement plant organ segmentation. After, 3 phenotypic traits (stem diameter, leaf width, and leaf length) were extracted. To test the generality of the proposed method, the public dataset Pheno4D was included in this study. Experimental results showed that the weakly supervised network obtained similar segmentation performance compared with the fully supervised setting. Our method achieved 95.1%, 96.6%, 95.8%, and 92.2% in the precision, recall, F1 score, and mIoU for stem–leaf segmentation for the soybean dataset and 53%, 62.8%, and 70.3% in the AP, AP@25, and AP@50 for leaf instance segmentation for the Pheno4D dataset. This study provides an effective way for characterizing 3D plant architecture, which will become useful for plant breeders to enhance selection processes. The trained networks are available at https://github.com/jieyi-one/EFF-3DPSEG. |
format | Online Article Text |
id | pubmed-10395505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | AAAS |
record_format | MEDLINE/PubMed |
spelling | pubmed-103955052023-08-03 Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning Luo, Liyi Jiang, Xintong Yang, Yu Samy, Eugene Roy Antony Lefsrud, Mark Hoyos-Villegas, Valerio Sun, Shangpeng Plant Phenomics Research Article Reliable and automated 3-dimensional (3D) plant shoot segmentation is a core prerequisite for the extraction of plant phenotypic traits at the organ level. Combining deep learning and point clouds can provide effective ways to address the challenge. However, fully supervised deep learning methods require datasets to be point-wise annotated, which is extremely expensive and time-consuming. In our work, we proposed a novel weakly supervised framework, Eff-3DPSeg, for 3D plant shoot segmentation. First, high-resolution point clouds of soybean were reconstructed using a low-cost photogrammetry system, and the Meshlab-based Plant Annotator was developed for plant point cloud annotation. Second, a weakly supervised deep learning method was proposed for plant organ segmentation. The method contained (a) pretraining a self-supervised network using Viewpoint Bottleneck loss to learn meaningful intrinsic structure representation from the raw point clouds and (b) fine-tuning the pretrained model with about only 0.5% points being annotated to implement plant organ segmentation. After, 3 phenotypic traits (stem diameter, leaf width, and leaf length) were extracted. To test the generality of the proposed method, the public dataset Pheno4D was included in this study. Experimental results showed that the weakly supervised network obtained similar segmentation performance compared with the fully supervised setting. Our method achieved 95.1%, 96.6%, 95.8%, and 92.2% in the precision, recall, F1 score, and mIoU for stem–leaf segmentation for the soybean dataset and 53%, 62.8%, and 70.3% in the AP, AP@25, and AP@50 for leaf instance segmentation for the Pheno4D dataset. This study provides an effective way for characterizing 3D plant architecture, which will become useful for plant breeders to enhance selection processes. The trained networks are available at https://github.com/jieyi-one/EFF-3DPSEG. AAAS 2023-08-02 /pmc/articles/PMC10395505/ /pubmed/37539075 http://dx.doi.org/10.34133/plantphenomics.0080 Text en Copyright © 2023 Liyi Luo et al. https://creativecommons.org/licenses/by/4.0/Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Luo, Liyi Jiang, Xintong Yang, Yu Samy, Eugene Roy Antony Lefsrud, Mark Hoyos-Villegas, Valerio Sun, Shangpeng Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning |
title | Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning |
title_full | Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning |
title_fullStr | Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning |
title_full_unstemmed | Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning |
title_short | Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning |
title_sort | eff-3dpseg: 3d organ-level plant shoot segmentation using annotation-efficient deep learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395505/ https://www.ncbi.nlm.nih.gov/pubmed/37539075 http://dx.doi.org/10.34133/plantphenomics.0080 |
work_keys_str_mv | AT luoliyi eff3dpseg3dorganlevelplantshootsegmentationusingannotationefficientdeeplearning AT jiangxintong eff3dpseg3dorganlevelplantshootsegmentationusingannotationefficientdeeplearning AT yangyu eff3dpseg3dorganlevelplantshootsegmentationusingannotationefficientdeeplearning AT samyeugeneroyantony eff3dpseg3dorganlevelplantshootsegmentationusingannotationefficientdeeplearning AT lefsrudmark eff3dpseg3dorganlevelplantshootsegmentationusingannotationefficientdeeplearning AT hoyosvillegasvalerio eff3dpseg3dorganlevelplantshootsegmentationusingannotationefficientdeeplearning AT sunshangpeng eff3dpseg3dorganlevelplantshootsegmentationusingannotationefficientdeeplearning |