Cargando…

Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing

Currently, energy efficiency and saving in production engineering, including Material Extrusion (MEX) Additive Manufacturing, are of key importance to ensure process sustainability and cost-effectiveness. The functionality of parts made with MEX 3D-printing remains solid, especially for expensive hi...

Descripción completa

Detalles Bibliográficos
Autores principales: Vidakis, Nectarios, Petousis, Markos, Mountakis, Nikolaos, Karapidakis, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395642/
https://www.ncbi.nlm.nih.gov/pubmed/37539218
http://dx.doi.org/10.1016/j.heliyon.2023.e18363
_version_ 1785083620900208640
author Vidakis, Nectarios
Petousis, Markos
Mountakis, Nikolaos
Karapidakis, Emmanuel
author_facet Vidakis, Nectarios
Petousis, Markos
Mountakis, Nikolaos
Karapidakis, Emmanuel
author_sort Vidakis, Nectarios
collection PubMed
description Currently, energy efficiency and saving in production engineering, including Material Extrusion (MEX) Additive Manufacturing, are of key importance to ensure process sustainability and cost-effectiveness. The functionality of parts made with MEX 3D-printing remains solid, especially for expensive high-performance polymers, for biomedical, automotive, and aerospace industries. Herein, the energy and tensile strength metrics are investigated over three key process control parameters (Nozzle Temperature, Layer Thickness, and Printing Speed), with the aid of laboratory-scale PEEK filaments fabricated with melt extrusion. A double optimization is attempted for the production by consuming minimum energy, of PEEK parts with improved strength. A three-level Box-Behnken design with five replicas for each experimental run was employed. Statistical analysis of the experimental findings proved that LT is the most decisive control setting for mechanical strength. An LT of 0.1 mm maximized the tensile endurance (∼74 MPa), but at the same time, it was responsible for the worst energy (∼0.58 MJ) and printing time (∼900 s) expenditure. The experimental and statistical findings are further discussed and interpreted using fractographic SEM and optical microscopy, revealing the 3D printing quality and the fracture mechanisms in the samples. Thermogravimetric analysis (TGA) was performed. The findings hold measurable engineering and industrial merit, since they may be utilized to achieve an optimum case-dependent compromise between the usually contradictory goals of productivity, energy performance, and mechanical functionality.
format Online
Article
Text
id pubmed-10395642
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103956422023-08-03 Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing Vidakis, Nectarios Petousis, Markos Mountakis, Nikolaos Karapidakis, Emmanuel Heliyon Research Article Currently, energy efficiency and saving in production engineering, including Material Extrusion (MEX) Additive Manufacturing, are of key importance to ensure process sustainability and cost-effectiveness. The functionality of parts made with MEX 3D-printing remains solid, especially for expensive high-performance polymers, for biomedical, automotive, and aerospace industries. Herein, the energy and tensile strength metrics are investigated over three key process control parameters (Nozzle Temperature, Layer Thickness, and Printing Speed), with the aid of laboratory-scale PEEK filaments fabricated with melt extrusion. A double optimization is attempted for the production by consuming minimum energy, of PEEK parts with improved strength. A three-level Box-Behnken design with five replicas for each experimental run was employed. Statistical analysis of the experimental findings proved that LT is the most decisive control setting for mechanical strength. An LT of 0.1 mm maximized the tensile endurance (∼74 MPa), but at the same time, it was responsible for the worst energy (∼0.58 MJ) and printing time (∼900 s) expenditure. The experimental and statistical findings are further discussed and interpreted using fractographic SEM and optical microscopy, revealing the 3D printing quality and the fracture mechanisms in the samples. Thermogravimetric analysis (TGA) was performed. The findings hold measurable engineering and industrial merit, since they may be utilized to achieve an optimum case-dependent compromise between the usually contradictory goals of productivity, energy performance, and mechanical functionality. Elsevier 2023-07-17 /pmc/articles/PMC10395642/ /pubmed/37539218 http://dx.doi.org/10.1016/j.heliyon.2023.e18363 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Vidakis, Nectarios
Petousis, Markos
Mountakis, Nikolaos
Karapidakis, Emmanuel
Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing
title Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing
title_full Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing
title_fullStr Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing
title_full_unstemmed Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing
title_short Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing
title_sort box-behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of peek in mex 3d-printing
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395642/
https://www.ncbi.nlm.nih.gov/pubmed/37539218
http://dx.doi.org/10.1016/j.heliyon.2023.e18363
work_keys_str_mv AT vidakisnectarios boxbehnkenmodelingtoquantifytheimpactofcontrolparametersontheenergyandtensileefficiencyofpeekinmex3dprinting
AT petousismarkos boxbehnkenmodelingtoquantifytheimpactofcontrolparametersontheenergyandtensileefficiencyofpeekinmex3dprinting
AT mountakisnikolaos boxbehnkenmodelingtoquantifytheimpactofcontrolparametersontheenergyandtensileefficiencyofpeekinmex3dprinting
AT karapidakisemmanuel boxbehnkenmodelingtoquantifytheimpactofcontrolparametersontheenergyandtensileefficiencyofpeekinmex3dprinting