Cargando…
Automated Detection of Anatomical Landmarks During Colonoscopy Using a Deep Learning Model
BACKGROUND AND AIMS: Identification and photo-documentation of the ileocecal valve (ICV) and appendiceal orifice (AO) confirm completeness of colonoscopy examinations. We aimed to develop and test a deep convolutional neural network (DCNN) model that can automatically identify ICV and AO, and differ...
Autores principales: | Taghiakbari, Mahsa, Hamidi Ghalehjegh, Sina, Jehanno, Emmanuel, Berthier, Tess, di Jorio, Lisa, Ghadakzadeh, Saber, Barkun, Alan, Takla, Mark, Bouin, Mickael, Deslandres, Eric, Bouchard, Simon, Sidani, Sacha, Bengio, Yoshua, von Renteln, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395661/ https://www.ncbi.nlm.nih.gov/pubmed/37538187 http://dx.doi.org/10.1093/jcag/gwad017 |
Ejemplares similares
-
A108 AUTOMATED DETECTION OF ILEOCECAL VALVE, APPENDICEAL ORIFICE, AND POLYP DURING COLONOSCOPY USING A DEEP LEARNING MODEL
por: Taghiakbari, M, et al.
Publicado: (2023) -
Measuring the observer (Hawthorne) effect on adenoma detection rates
por: Taghiakbari, Mahsa, et al.
Publicado: (2023) -
Incomplete resection rates of 4- to 20-mm non-pedunculated colorectal polyps when using wide-field cold snare resection with routine submucosal injection
por: Motchum, Leslie, et al.
Publicado: (2023) -
A25 MEASURING THE OBSERVER (HAWTHORNE) EFFECT ON ADENOMA DETECTION RATES: A CASE-CONTROL RETROSPECTIVE STUDY
por: Taghiakbari, M, et al.
Publicado: (2023) -
Non-optical polyp-based resect and discard strategy: A prospective clinical study
por: Taghiakbari, Mahsa, et al.
Publicado: (2022)