Cargando…
Using electrooculography with visual stimulus tracking test in diagnosing of ADHD: findings from machine learning algorithms
BACKGROUND/AIM: Attention deficit hyperactivity disorder (ADHD), one of the most common neurodevelopmental disorders in childhood, is diagnosed clinically by assessing the symptoms of inattention, hyperactivity, and impulsivity. Also, there are limited objective assessment tools to support the diagn...
Autores principales: | LATİFOĞLU, Fatma, ESAS, Mustafa Yasin, İLERİ, Ramis, ÖZMEN, Sevgi, DEMİRCİ, Esra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Scientific and Technological Research Council of Turkey (TUBITAK)
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395733/ https://www.ncbi.nlm.nih.gov/pubmed/36422485 http://dx.doi.org/10.55730/1300-0144.5502 |
Ejemplares similares
-
Evaluation of Two Types of Drug Treatment with QEEG in Children with ADHD
por: Aldemir, Ramazan, et al.
Publicado: (2018) -
Comparing Eye Tracking with Electrooculography for Measuring Individual Sentence Comprehension Duration
por: Müller, Jana Annina, et al.
Publicado: (2016) -
Soft Wireless Headband
Bioelectronics and Electrooculography
for Persistent Human–Machine Interfaces
por: Ban, Seunghyeb, et al.
Publicado: (2023) -
A New Hybrid Approach Based on Time Frequency Images and Deep Learning Methods for Diagnosis of Migraine Disease and Investigation of Stimulus Effect
por: Orhanbulucu, Fırat, et al.
Publicado: (2023) -
Quantitative Electroencephalography Analysis for Improved Assessment of Consciousness Levels in Deep Coma Patients Using a Proposed Stimulus Stage
por: Altıntop, Çiğdem Gülüzar, et al.
Publicado: (2023)