Cargando…
A wearable group-synchronized EEG system for multi-subject brain–computer interfaces
OBJECTIVE: The multi-subject brain–computer interface (mBCI) is becoming a key tool for the analysis of group behaviors. It is necessary to adopt a neural recording system for collaborative brain signal acquisition, which is usually in the form of a fixed wire. APPROACH: In this study, we designed a...
Autores principales: | Huang, Yong, Huan, Yuxiang, Zou, Zhuo, Pei, Weihua, Gao, Xiaorong, Wang, Yijun, Zheng, Lirong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396297/ https://www.ncbi.nlm.nih.gov/pubmed/37539380 http://dx.doi.org/10.3389/fnins.2023.1176344 |
Ejemplares similares
-
An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces
por: Zhu, Fangkun, et al.
Publicado: (2021) -
A Hybrid Brain-Computer Interface Based on Visual Evoked Potential and Pupillary Response
por: Jiang, Lu, et al.
Publicado: (2022) -
Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications
por: Park, Seonghun, et al.
Publicado: (2020) -
A Cross-Session Dataset for Collaborative Brain-Computer Interfaces Based on Rapid Serial Visual Presentation
por: Zheng, Li, et al.
Publicado: (2020) -
Enhancing Cross-Subject Motor Imagery Classification in EEG-Based Brain–Computer Interfaces by Using Multi-Branch CNN
por: Chowdhury, Radia Rayan, et al.
Publicado: (2023)