Cargando…

Spontaneous body wall contractions stabilize the fluid microenvironment that shapes host–microbe associations

The freshwater polyp Hydra is a popular biological model system; however, we still do not understand one of its most salient behaviors, the generation of spontaneous body wall contractions. Here, by applying experimental fluid dynamics analysis and mathematical modeling, we provide functional eviden...

Descripción completa

Detalles Bibliográficos
Autores principales: Nawroth, Janna C, Giez, Christoph, Klimovich, Alexander, Kanso, Eva, Bosch, Thomas CG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396340/
https://www.ncbi.nlm.nih.gov/pubmed/37399060
http://dx.doi.org/10.7554/eLife.83637
Descripción
Sumario:The freshwater polyp Hydra is a popular biological model system; however, we still do not understand one of its most salient behaviors, the generation of spontaneous body wall contractions. Here, by applying experimental fluid dynamics analysis and mathematical modeling, we provide functional evidence that spontaneous contractions of body walls enhance the transport of chemical compounds from and to the tissue surface where symbiotic bacteria reside. Experimentally, a reduction in the frequency of spontaneous body wall contractions is associated with a changed composition of the colonizing microbiota. Together, our findings suggest that spontaneous body wall contractions create an important fluid transport mechanism that (1) may shape and stabilize specific host–microbe associations and (2) create fluid microhabitats that may modulate the spatial distribution of the colonizing microbes. This mechanism may be more broadly applicable to animal–microbe interactions since research has shown that rhythmic spontaneous contractions in the gastrointestinal tracts are essential for maintaining normal microbiota.