Cargando…
Assumptions and analysis planning in studies with missing data in multiple variables: moving beyond the MCAR/MAR/MNAR classification
Researchers faced with incomplete data are encouraged to consider whether their data are ‘missing completely at random’ (MCAR), ‘missing at random’ (MAR) or ‘missing not at random’ (MNAR) when planning their analysis. However, there are two major problems with this classification as originally defin...
Autores principales: | Lee, Katherine J, Carlin, John B, Simpson, Julie A, Moreno-Betancur, Margarita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396404/ https://www.ncbi.nlm.nih.gov/pubmed/36779333 http://dx.doi.org/10.1093/ije/dyad008 |
Ejemplares similares
-
Analyzing the Effect of Imputation on Classification Performance under MCAR and MAR Missing Mechanisms
por: Buczak, Philip, et al.
Publicado: (2023) -
What is the difference between missing completely at random and missing at random?
por: Bhaskaran, Krishnan, et al.
Publicado: (2014) -
Reflection on modern methods: shared-parameter models for longitudinal studies with missing data
por: Griswold, Michael E, et al.
Publicado: (2021) -
Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors
por: Galimard, Jacques-Emmanuel, et al.
Publicado: (2018) -
Comparison of Different LGM-Based Methods with MAR and MNAR Dropout Data
por: Li, Meijuan, et al.
Publicado: (2017)