Cargando…

The functional effects of a dominant consumer are altered following the loss of a dominant producer

Human impacts on ecosystems are resulting in unprecedented rates of biodiversity loss worldwide. The loss of species results in the loss of the multiple roles that each species plays or functions (i.e., “ecosystem multifunctionality”) that it provides. A more comprehensive understanding of the effec...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahanes, Samuel A., Sorte, Cascade J. B., Bracken, Matthew E. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396790/
https://www.ncbi.nlm.nih.gov/pubmed/37546568
http://dx.doi.org/10.1002/ece3.10342
Descripción
Sumario:Human impacts on ecosystems are resulting in unprecedented rates of biodiversity loss worldwide. The loss of species results in the loss of the multiple roles that each species plays or functions (i.e., “ecosystem multifunctionality”) that it provides. A more comprehensive understanding of the effects of species on ecosystem multifunctionality is necessary for assessing the ecological impacts of species loss. We studied the effects of two dominant intertidal species, a primary producer (the seaweed Neorhodomela oregona) and a consumer (the shellfish Mytilus trossulus), on 12 ecosystem functions in a coastal ecosystem, both in undisturbed tide pools and following the removal of the dominant producer. We modified analytical methods used in biodiversity–multifunctionality studies to investigate the potential effects of individual dominant species on ecosystem function. The effects of the two dominant species from different trophic levels tended to differ in directionality (+/−) consistently (92% of the time) across the 12 individual functions considered. Using averaging and multiple threshold approaches, we found that the dominant consumer—but not the dominant producer—was associated with ecosystem multifunctionality. Additionally, the relationship between abundance and multifunctionality differed depending on whether the dominant producer was present, with a negative relationship between the dominant consumer and ecosystem function with the dominant producer present compared to a non‐significant, positive trend where the producer had been removed. Our findings suggest that interactions among dominant species can drive ecosystem function. The results of this study highlight the utility of methods previously used in biodiversity‐focused research for studying functional contributions of individual species, as well as the importance of species abundance and identity in driving ecosystem multifunctionality, in the context of species loss.