Cargando…
A machine learning model for distinguishing Kawasaki disease from sepsis
KD is an acute systemic vasculitis that most commonly affects children under 5 years old. Sepsis is a systemic inflammatory response syndrome caused by infection. The main clinical manifestations of both are fever, and laboratory tests include elevated WBC count, C-reactive protein, and procalcitoni...
Autores principales: | Li, Chi, Liu, Yu-chen, Zhang, De-ran, Han, Yan-xun, Chen, Bang-jie, Long, Yun, Wu, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397201/ https://www.ncbi.nlm.nih.gov/pubmed/37532772 http://dx.doi.org/10.1038/s41598-023-39745-8 |
Ejemplares similares
-
Diagnostic model based on bioinformatics and machine learning to distinguish Kawasaki disease using multiple datasets
por: Zhang, Mengyi, et al.
Publicado: (2022) -
Imaging and Clinical Data Distinguish Lymphadenopathy-First-Presenting Kawasaki Disease from Bacterial Cervical Lymphadenitis
por: Park, Byung Sung, et al.
Publicado: (2018) -
MiR-222-3p in Platelets Serves as a Distinguishing Marker for Early Recognition of Kawasaki Disease
por: Wang, Bo, et al.
Publicado: (2019) -
A novel nomogram model for differentiating Kawasaki disease from sepsis
por: Liu, Xiao-Ping, et al.
Publicado: (2020) -
Clinical characteristics and outcomes of children with Kawasaki disease combined with sepsis in the pediatric intensive care unit
por: Yang, Yufan, et al.
Publicado: (2023)