Cargando…
Bayesian reconstruction of magnetic resonance images using Gaussian processes
A central goal of modern magnetic resonance imaging (MRI) is to reduce the time required to produce high-quality images. Efforts have included hardware and software innovations such as parallel imaging, compressed sensing, and deep learning-based reconstruction. Here, we propose and demonstrate a Ba...
Autores principales: | Xu, Yihong, Farris, Chad W., Anderson, Stephan W., Zhang, Xin, Brown, Keith A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397278/ https://www.ncbi.nlm.nih.gov/pubmed/37532743 http://dx.doi.org/10.1038/s41598-023-39533-4 |
Ejemplares similares
-
Field Map Reconstruction in Magnetic Resonance Imaging Using Bayesian Estimation
por: Baselice, Fabio, et al.
Publicado: (2009) -
Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes
por: Xu, Xiaoguang, et al.
Publicado: (2016) -
Global Optimization Employing Gaussian Process-Based Bayesian Surrogates†
por: Preuss, Roland, et al.
Publicado: (2018) -
Estimation of dynamic SNP-heritability with Bayesian Gaussian process models
por: Arjas, Arttu, et al.
Publicado: (2020) -
Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design
por: Xu, Zhihang, et al.
Publicado: (2020)