Cargando…
Assessing Australia’s future solar power ramps with climate projections
Increasing levels of photovoltaic (PV) penetration to the electricity grid brings challenges to both design and operation of the grid due to its vulnerability to climate change. A crucial aspect of PV operation is power ramps leading to variability and instability in the grid. With notable large-sca...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397292/ https://www.ncbi.nlm.nih.gov/pubmed/37532699 http://dx.doi.org/10.1038/s41598-023-38566-z |
Sumario: | Increasing levels of photovoltaic (PV) penetration to the electricity grid brings challenges to both design and operation of the grid due to its vulnerability to climate change. A crucial aspect of PV operation is power ramps leading to variability and instability in the grid. With notable large-scale PV deployment planned, including the world’s largest planned solar energy infrastructure in Powell Creek Australia, characterising future ramps is crucial for ensuring stable power generation to support large-scale economic development. Using CORDEX-Australasia projections under RCP8.5 and RCP4.5 emission scenarios, future solar ramps across Australia have been characterised up to 2100. Results predict a reduction in ramp magnitude across Australia, with changes in frequency and period length varying with the location. This work highlights the importance of considering future changes in climate when designing large-scale solar farms to ensure the incorporation of frequency control devices and storage plans for a reliable power supply. |
---|