Cargando…
Spatial attention-based residual network for human burn identification and classification
Diagnosing burns in humans has become critical, as early identification can save lives. The manual process of burn diagnosis is time-consuming and complex, even for experienced doctors. Machine learning (ML) and deep convolutional neural network (CNN) models have emerged as the standard for medical...
Autores principales: | Yadav, D. P., Aljrees, Turki, Kumar, Deepak, Kumar, Ankit, Singh, Kamred Udham, Singh, Teekam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397300/ https://www.ncbi.nlm.nih.gov/pubmed/37532880 http://dx.doi.org/10.1038/s41598-023-39618-0 |
Ejemplares similares
-
Enhancing IoT Security through a Green and Sustainable Federated Learning Platform: Leveraging Efficient Encryption and the Quondam Signature Algorithm
por: Aljrees, Turki, et al.
Publicado: (2023) -
Inferring linear-B cell epitopes using 2-step metaheuristic variant-feature selection using genetic algorithm
por: Angaitkar, Pratik, et al.
Publicado: (2023) -
Image-based decision making for reliable and proper diagnosing in NIFTI format using watermarking
por: Singh, Kamred Udham, et al.
Publicado: (2022) -
Morphological diagnosis of hematologic malignancy using feature fusion-based deep convolutional neural network
por: Yadav, D. P., et al.
Publicado: (2023) -
Noise Suppression and Edge Preservation for Low-Dose COVID-19 CT Images Using NLM and Method Noise Thresholding in Shearlet Domain
por: Diwakar, Manoj, et al.
Publicado: (2022)