Cargando…
Materials fatigue prediction using graph neural networks on microstructure representations
The local prediction of fatigue damage within polycrystals in a high-cycle fatigue setting is a long-lasting and challenging task. It requires identifying grains tending to accumulate plastic deformation under cyclic loading. We address this task by transcribing ferritic steel microtexture and damag...
Autores principales: | Thomas, Akhil, Durmaz, Ali Riza, Alam, Mehwish, Gumbsch, Peter, Sack, Harald, Eberl, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397301/ https://www.ncbi.nlm.nih.gov/pubmed/37532871 http://dx.doi.org/10.1038/s41598-023-39400-2 |
Ejemplares similares
-
Author Correction: Materials fatigue prediction using graph neural networks on microstructure representations
por: Thomas, Akhil, et al.
Publicado: (2023) -
A deep learning approach for complex microstructure inference
por: Durmaz, Ali Riza, et al.
Publicado: (2021) -
Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning
por: Thomas, Akhil, et al.
Publicado: (2020) -
Graph Neural Network for representation learning of lung cancer
por: Aftab, Rukhma, et al.
Publicado: (2023) -
Syntactically-informed word representations from graph neural network
por: Tran, Thy Thy, et al.
Publicado: (2020)