Cargando…
Spatial Clusters of Cancer Mortality in Brazil: A Machine Learning Modeling Approach
Objectives: Our aim was to test if machine learning algorithms can predict cancer mortality (CM) at an ecological level and use these results to identify statistically significant spatial clusters of excess cancer mortality (eCM). Methods: Age-standardized CM was extracted from the official database...
Autores principales: | Casaes Teixeira, Bruno, Toporcov, Tatiana Natasha, Chiaravalloti-Neto, Francisco, Chiavegatto Filho, Alexandre Dias Porto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397398/ https://www.ncbi.nlm.nih.gov/pubmed/37546351 http://dx.doi.org/10.3389/ijph.2023.1604789 |
Ejemplares similares
-
Environmental factors and cardiovascular diseases: the association of income inequality and green spaces in elderly residents of São Paulo, Brazil
por: Massa, Kaio Henrique Correa, et al.
Publicado: (2016) -
A multipurpose machine learning approach to predict COVID-19 negative prognosis in São Paulo, Brazil
por: Fernandes, Fernando Timoteo, et al.
Publicado: (2021) -
Covid-19 hospital mortality using spatial hierarchical models: cohort design with 74,994 registers
por: Chiaravalloti, Francisco, et al.
Publicado: (2023) -
Prediction of absenteeism in public schools teachers with machine learning
por: Fernandes, Fernando Timoteo, et al.
Publicado: (2021) -
Improving the performance of machine learning algorithms for health outcomes predictions in multicentric cohorts
por: Wichmann, Roberta Moreira, et al.
Publicado: (2023)