Cargando…
iGRLDTI: an improved graph representation learning method for predicting drug–target interactions over heterogeneous biological information network
MOTIVATION: The task of predicting drug–target interactions (DTIs) plays a significant role in facilitating the development of novel drug discovery. Compared with laboratory-based approaches, computational methods proposed for DTI prediction are preferred due to their high-efficiency and low-cost ad...
Autores principales: | Zhao, Bo-Wei, Su, Xiao-Rui, Hu, Peng-Wei, Huang, Yu-An, You, Zhu-Hong, Hu, Lun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397422/ https://www.ncbi.nlm.nih.gov/pubmed/37505483 http://dx.doi.org/10.1093/bioinformatics/btad451 |
Ejemplares similares
-
Multi-view heterogeneous molecular network representation learning for protein–protein interaction prediction
por: Su, Xiao-Rui, et al.
Publicado: (2022) -
RLFDDA: a meta-path based graph representation learning model for drug–disease association prediction
por: Zhang, Meng-Long, et al.
Publicado: (2022) -
A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning
por: Zhao, Bo-Wei, et al.
Publicado: (2021) -
Editorial: Graph representation learning in biological network
por: Roy, Swarup, et al.
Publicado: (2023) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021)