Cargando…
Molecular property prediction by semantic-invariant contrastive learning
MOTIVATION: Contrastive learning has been widely used as pretext tasks for self-supervised pre-trained molecular representation learning models in AI-aided drug design and discovery. However, existing methods that generate molecular views by noise-adding operations for contrastive learning may face...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397537/ https://www.ncbi.nlm.nih.gov/pubmed/37505457 http://dx.doi.org/10.1093/bioinformatics/btad462 |
_version_ | 1785083934339497984 |
---|---|
author | Zhang, Ziqiao Xie, Ailin Guan, Jihong Zhou, Shuigeng |
author_facet | Zhang, Ziqiao Xie, Ailin Guan, Jihong Zhou, Shuigeng |
author_sort | Zhang, Ziqiao |
collection | PubMed |
description | MOTIVATION: Contrastive learning has been widely used as pretext tasks for self-supervised pre-trained molecular representation learning models in AI-aided drug design and discovery. However, existing methods that generate molecular views by noise-adding operations for contrastive learning may face the semantic inconsistency problem, which leads to false positive pairs and consequently poor prediction performance. RESULTS: To address this problem, in this article, we first propose a semantic-invariant view generation method by properly breaking molecular graphs into fragment pairs. Then, we develop a Fragment-based Semantic-Invariant Contrastive Learning (FraSICL) model based on this view generation method for molecular property prediction. The FraSICL model consists of two branches to generate representations of views for contrastive learning, meanwhile a multi-view fusion and an auxiliary similarity loss are introduced to make better use of the information contained in different fragment-pair views. Extensive experiments on various benchmark datasets show that with the least number of pre-training samples, FraSICL can achieve state-of-the-art performance, compared with major existing counterpart models. AVAILABILITY AND IMPLEMENTATION: The code is publicly available at https://github.com/ZiqiaoZhang/FraSICL. |
format | Online Article Text |
id | pubmed-10397537 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103975372023-08-04 Molecular property prediction by semantic-invariant contrastive learning Zhang, Ziqiao Xie, Ailin Guan, Jihong Zhou, Shuigeng Bioinformatics Original Paper MOTIVATION: Contrastive learning has been widely used as pretext tasks for self-supervised pre-trained molecular representation learning models in AI-aided drug design and discovery. However, existing methods that generate molecular views by noise-adding operations for contrastive learning may face the semantic inconsistency problem, which leads to false positive pairs and consequently poor prediction performance. RESULTS: To address this problem, in this article, we first propose a semantic-invariant view generation method by properly breaking molecular graphs into fragment pairs. Then, we develop a Fragment-based Semantic-Invariant Contrastive Learning (FraSICL) model based on this view generation method for molecular property prediction. The FraSICL model consists of two branches to generate representations of views for contrastive learning, meanwhile a multi-view fusion and an auxiliary similarity loss are introduced to make better use of the information contained in different fragment-pair views. Extensive experiments on various benchmark datasets show that with the least number of pre-training samples, FraSICL can achieve state-of-the-art performance, compared with major existing counterpart models. AVAILABILITY AND IMPLEMENTATION: The code is publicly available at https://github.com/ZiqiaoZhang/FraSICL. Oxford University Press 2023-07-28 /pmc/articles/PMC10397537/ /pubmed/37505457 http://dx.doi.org/10.1093/bioinformatics/btad462 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Zhang, Ziqiao Xie, Ailin Guan, Jihong Zhou, Shuigeng Molecular property prediction by semantic-invariant contrastive learning |
title | Molecular property prediction by semantic-invariant contrastive learning |
title_full | Molecular property prediction by semantic-invariant contrastive learning |
title_fullStr | Molecular property prediction by semantic-invariant contrastive learning |
title_full_unstemmed | Molecular property prediction by semantic-invariant contrastive learning |
title_short | Molecular property prediction by semantic-invariant contrastive learning |
title_sort | molecular property prediction by semantic-invariant contrastive learning |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397537/ https://www.ncbi.nlm.nih.gov/pubmed/37505457 http://dx.doi.org/10.1093/bioinformatics/btad462 |
work_keys_str_mv | AT zhangziqiao molecularpropertypredictionbysemanticinvariantcontrastivelearning AT xieailin molecularpropertypredictionbysemanticinvariantcontrastivelearning AT guanjihong molecularpropertypredictionbysemanticinvariantcontrastivelearning AT zhoushuigeng molecularpropertypredictionbysemanticinvariantcontrastivelearning |