Cargando…
Molecular property prediction by semantic-invariant contrastive learning
MOTIVATION: Contrastive learning has been widely used as pretext tasks for self-supervised pre-trained molecular representation learning models in AI-aided drug design and discovery. However, existing methods that generate molecular views by noise-adding operations for contrastive learning may face...
Autores principales: | Zhang, Ziqiao, Xie, Ailin, Guan, Jihong, Zhou, Shuigeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397537/ https://www.ncbi.nlm.nih.gov/pubmed/37505457 http://dx.doi.org/10.1093/bioinformatics/btad462 |
Ejemplares similares
-
FraGAT: a fragment-oriented multi-scale graph attention model for molecular property prediction
por: Zhang, Ziqiao, et al.
Publicado: (2021) -
Molecular property prediction by contrastive learning with attention-guided positive sample selection
por: Wang, Jinxian, et al.
Publicado: (2023) -
Effective drug–target interaction prediction with mutual interaction neural network
por: Li, Fei, et al.
Publicado: (2022) -
A comparison study on feature selection of DNA structural properties for promoter prediction
por: Gan, Yanglan, et al.
Publicado: (2012) -
PCGAN: a generative approach for protein complex identification from protein interaction networks
por: Pan, Yuliang, et al.
Publicado: (2023)