Cargando…
Hydrogenation Effect on Interlayer Coupling and Magneto-Transport Properties of Pd/Co/Mg/Fe Multilayers
[Image: see text] Hydrogenation-induced modification of magnetic properties has been widely studied. A Mg spacer layer with high hydrogen storage stability was clamped in a Pd/Co/Mg/Fe multilayer structure to enhance its hydrogen storage stability and explore the structure’s magneto-transport proper...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398686/ https://www.ncbi.nlm.nih.gov/pubmed/37546610 http://dx.doi.org/10.1021/acsomega.3c01778 |
Sumario: | [Image: see text] Hydrogenation-induced modification of magnetic properties has been widely studied. A Mg spacer layer with high hydrogen storage stability was clamped in a Pd/Co/Mg/Fe multilayer structure to enhance its hydrogen storage stability and explore the structure’s magneto-transport properties. After 1 bar hydrogen exposure, the formation of a stable MgH(2) phase was demonstrated in an ambient environment at room temperature through X-ray diffraction. Lower magnetic coupling and enhanced magnetoresistance, compared to those of the as-grown sample, were observed using the longitudinal magneto-optical Kerr effect and a four-probe measurement. In this study, the hydrogenation stability of ferromagnetic multilayers was improved, and the concept of a hydrogenation-based spintronic device was developed. |
---|