Cargando…
Ginkgo biloba extract alleviates fatty liver hemorrhagic syndrome in laying hens via reshaping gut microbiota
BACKGROUND: Ginkgo biloba extract (GBE) is evidenced to be effective in the prevention and alleviation of metabolic disorders, including obesity, diabetes and fatty liver disease. However, the role of GBE in alleviating fatty liver hemorrhagic syndrome (FLHS) in laying hens and the underlying mechan...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399048/ https://www.ncbi.nlm.nih.gov/pubmed/37533076 http://dx.doi.org/10.1186/s40104-023-00900-w |
Sumario: | BACKGROUND: Ginkgo biloba extract (GBE) is evidenced to be effective in the prevention and alleviation of metabolic disorders, including obesity, diabetes and fatty liver disease. However, the role of GBE in alleviating fatty liver hemorrhagic syndrome (FLHS) in laying hens and the underlying mechanisms remain to be elucidated. Here, we investigated the effects of GBE on relieving FLHS with an emphasis on the modulatory role of GBE in chicken gut microbiota. RESULTS: The results showed that GBE treatment ameliorated biochemical blood indicators in high-fat diet (HFD)-induced FLHS laying hen model by decreasing the levels of TG, TC, ALT and ALP. The lipid accumulation and pathological score of liver were also relieved after GBE treatment. Moreover, GBE treatment enhanced the antioxidant activity of liver and serum by increasing GSH, SOD, T-AOC, GSH-PX and reducing MDA, and downregulated the expression of genes related to lipid synthesis (FAS, LXRα, GPAT1, PPARγ and ChREBP1) and inflammatory cytokines (TNF-α, IL-6, TLR4 and NF-κB) in the liver. Microbial profiling analysis revealed that GBE treatment reshaped the HFD-perturbed gut microbiota, particularly elevated the abundance of Megasphaera in the cecum. Meanwhile, targeted metabolomic analysis of SCFAs revealed that GBE treatment significantly promoted the production of total SCFAs, acetate and propionate, which were positively correlated with the GBE-enriched gut microbiota. Finally, we confirmed that the GBE-altered gut microbiota was sufficient to alleviate FLHS by fecal microbiota transplantation (FMT). CONCLUSIONS: We provided evidence that GBE alleviated FLHS in HFD-induced laying hens through reshaping the composition of gut microbiota. Our findings shed light on mechanism underlying the anti-FLHS efficacy of GBE and lay foundations for future use of GBE as additive to prevent and control FLHS in laying hen industry. |
---|