Cargando…
Effect of Ionic Liquids on Mechanical, Physical, and Antifungal Properties and Biocompatibility of a Soft Denture Lining Material
[Image: see text] This study aims to evaluate the effect of ionic liquids and their structure on the mechanical (tensile bond strength (TBS) and Shore A hardness), mass change, and antifungal properties of soft denture lining material. Butyl pyridinium chloride (BPCL) and octyl pyridinium chloride (...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399165/ https://www.ncbi.nlm.nih.gov/pubmed/37546657 http://dx.doi.org/10.1021/acsomega.3c02677 |
Sumario: | [Image: see text] This study aims to evaluate the effect of ionic liquids and their structure on the mechanical (tensile bond strength (TBS) and Shore A hardness), mass change, and antifungal properties of soft denture lining material. Butyl pyridinium chloride (BPCL) and octyl pyridinium chloride (OPCL) were synthesized, characterized, and mixed in concentrations ranging from 0.65–10% w/w with a soft denture liner (Molloplast-B) and were divided into seven groups (C, BPCL1-3, and OPCL1-3). The TBS of bar-shaped specimens was calculated on a Universal Testing Machine. For Shore A hardness, disc-shaped specimens were analyzed using a durometer. The mass change (%) of specimens was calculated by the weight loss method. The antifungal potential of ionic liquids and test specimens was measured using agar well and disc diffusion methods (p ≤ 0.05). The alamarBlue assay was performed to assess the biocompatibility of the samples. The mean TBS values of Molloplast-B samples were significantly lower (p ≤ 0.05) for all groups except for OPCL1. Compared with the control, the mean shore A hardness values were significantly higher (p ≤ 0.05) for samples in groups BPCL 2 and 3. After 6 weeks, the OPCL samples showed a significantly lower (p ≤ 0.05) mass change as compared to the control. Agar well diffusion methods demonstrated a maximum zone of inhibition for 2.5% OPCL (20.5 ± 0.05 mm) after 24 h. Disc diffusion methods showed no zones of inhibition. The biocompatibility of the ionic liquid-modified sample was comparable to that of the control. The addition of ionic liquids in Molloplast-B improved the liner’s surface texture, increased its hardness, and decreased its % mass change and tensile strength. Ionic liquids exhibited potent antifungal activity. |
---|