Cargando…
Unsupervised anomaly appraisal of cleft faces using a StyleGAN2-based model adaptation technique
A novel machine learning framework that is able to consistently detect, localize, and measure the severity of human congenital cleft lip anomalies is introduced. The ultimate goal is to fill an important clinical void: to provide an objective and clinically feasible method of gauging baseline facial...
Autores principales: | Hayajneh, Abdullah, Shaqfeh, Mohammad, Serpedin, Erchin, Stotland, Mitchell A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399833/ https://www.ncbi.nlm.nih.gov/pubmed/37535557 http://dx.doi.org/10.1371/journal.pone.0288228 |
Ejemplares similares
-
ShapeEditor: A StyleGAN Encoder for Stable and High Fidelity Face Swapping
por: Yang, Shuai, et al.
Publicado: (2022) -
Toward a Universal Measure of Facial Difference Using Two Novel Machine Learning Models
por: Takiddin, Abdulrahman, et al.
Publicado: (2022) -
High Quality Coal Foreign Object Image Generation Method Based on StyleGAN-DSAD
por: Cao, Xiangang, et al.
Publicado: (2022) -
Personalized quantification of facial normality: a machine learning approach
por: Boyaci, Osman, et al.
Publicado: (2020) -
MetaAnalyst: a user-friendly tool for metagenomic biomarker detection and phenotype classification
por: Alshawaqfeh, Mustafa, et al.
Publicado: (2022)