Cargando…
Better data for decision-making through Bayesian imputation of suppressed provisional COVID-19 death counts
PURPOSE: To facilitate use of timely, granular, and publicly available data on COVID-19 mortality, we provide a method for imputing suppressed COVID-19 death counts in the National Center for Health Statistic’s 2020 provisional mortality data by quarter, county, and age. METHODS: We used a Bayesian...
Autores principales: | Kao, Szu-Yu Zoe, Tutwiler, M. Shane, Ekwueme, Donatus U., Truman, Benedict I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399909/ https://www.ncbi.nlm.nih.gov/pubmed/37535647 http://dx.doi.org/10.1371/journal.pone.0288961 |
Ejemplares similares
-
Provisional COVID-19 Age-Adjusted Death Rates, by Race and Ethnicity — United States, 2020–2021
por: Truman, Benedict I., et al.
Publicado: (2022) -
Modeling zero inflation and overdispersion in provisional Covid-19 death counts
por: Effiong, Andem, et al.
Publicado: (2022) -
Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag
por: Jersakova, Radka, et al.
Publicado: (2022) -
Provisional Decision-Making for Perioperative Blood Pressure Management: A Narrative Review
por: Song, Qiliang, et al.
Publicado: (2022) -
Decision-making under risk and theory of mind in adolescent offenders in provisional deprivation of liberty
por: Loureiro, Rubens José, et al.
Publicado: (2022)