Cargando…
Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
BACKGROUND: Recent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400292/ https://www.ncbi.nlm.nih.gov/pubmed/37546399 http://dx.doi.org/10.3389/fonc.2023.1196414 |
_version_ | 1785084411395440640 |
---|---|
author | Tonneau, Marion Phan, Kim Manem, Venkata S. K. Low-Kam, Cecile Dutil, Francis Kazandjian, Suzanne Vanderweyen, Davy Panasci, Justin Malo, Julie Coulombe, François Gagné, Andréanne Elkrief, Arielle Belkaïd, Wiam Di Jorio, Lisa Orain, Michele Bouchard, Nicole Muanza, Thierry Rybicki, Frank J. Kafi, Kam Huntsman, David Joubert, Philippe Chandelier, Florent Routy, Bertrand |
author_facet | Tonneau, Marion Phan, Kim Manem, Venkata S. K. Low-Kam, Cecile Dutil, Francis Kazandjian, Suzanne Vanderweyen, Davy Panasci, Justin Malo, Julie Coulombe, François Gagné, Andréanne Elkrief, Arielle Belkaïd, Wiam Di Jorio, Lisa Orain, Michele Bouchard, Nicole Muanza, Thierry Rybicki, Frank J. Kafi, Kam Huntsman, David Joubert, Philippe Chandelier, Florent Routy, Bertrand |
author_sort | Tonneau, Marion |
collection | PubMed |
description | BACKGROUND: Recent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations in image acquisition and reconstruction. Using radiomics, we investigated the importance of scan normalization as part of a broader machine learning framework to enable model external generalizability to predict ICI response in non-small cell lung cancer (NSCLC) patients across different centers. METHODS: Radiomics features were extracted and compared from 642 advanced NSCLC patients on pre-ICI scans using established open-source PyRadiomics and a proprietary DeepRadiomics deep learning technology. The population was separated into two groups: a discovery cohort of 512 NSCLC patients from three academic centers and a validation cohort that included 130 NSCLC patients from a fourth center. We harmonized images to account for variations in reconstruction kernel, slice thicknesses, and device manufacturers. Multivariable models, evaluated using cross-validation, were used to estimate the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or DeepRadiomics for progression-free survival at 6 months (PFS-6). RESULTS: The best prognostic factor for PFS-6, excluding radiomics features, was obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the discovery and 0.62 in the validation cohort). Without image harmonization, combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69 and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in the validation cohort. This lack of generalizability was consistent with observations in principal component analysis clustered by CT scan parameters. Subsequently, image harmonization eliminated these clusters. The combination of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery and validation cohort, respectively. Conversely, the combination of Clinical + PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59. CONCLUSION: We demonstrated that a risk prediction model combining Clinical + DeepRadiomics was generalizable following CT scan harmonization and machine learning generalization methods. These results had similar performances to routine oncology practice using Clinical + PD-L1. This study supports the strong potential of radiomics as a future non-invasive strategy to predict ICI response in advanced NSCLC. |
format | Online Article Text |
id | pubmed-10400292 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104002922023-08-04 Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study Tonneau, Marion Phan, Kim Manem, Venkata S. K. Low-Kam, Cecile Dutil, Francis Kazandjian, Suzanne Vanderweyen, Davy Panasci, Justin Malo, Julie Coulombe, François Gagné, Andréanne Elkrief, Arielle Belkaïd, Wiam Di Jorio, Lisa Orain, Michele Bouchard, Nicole Muanza, Thierry Rybicki, Frank J. Kafi, Kam Huntsman, David Joubert, Philippe Chandelier, Florent Routy, Bertrand Front Oncol Oncology BACKGROUND: Recent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations in image acquisition and reconstruction. Using radiomics, we investigated the importance of scan normalization as part of a broader machine learning framework to enable model external generalizability to predict ICI response in non-small cell lung cancer (NSCLC) patients across different centers. METHODS: Radiomics features were extracted and compared from 642 advanced NSCLC patients on pre-ICI scans using established open-source PyRadiomics and a proprietary DeepRadiomics deep learning technology. The population was separated into two groups: a discovery cohort of 512 NSCLC patients from three academic centers and a validation cohort that included 130 NSCLC patients from a fourth center. We harmonized images to account for variations in reconstruction kernel, slice thicknesses, and device manufacturers. Multivariable models, evaluated using cross-validation, were used to estimate the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or DeepRadiomics for progression-free survival at 6 months (PFS-6). RESULTS: The best prognostic factor for PFS-6, excluding radiomics features, was obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the discovery and 0.62 in the validation cohort). Without image harmonization, combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69 and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in the validation cohort. This lack of generalizability was consistent with observations in principal component analysis clustered by CT scan parameters. Subsequently, image harmonization eliminated these clusters. The combination of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery and validation cohort, respectively. Conversely, the combination of Clinical + PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59. CONCLUSION: We demonstrated that a risk prediction model combining Clinical + DeepRadiomics was generalizable following CT scan harmonization and machine learning generalization methods. These results had similar performances to routine oncology practice using Clinical + PD-L1. This study supports the strong potential of radiomics as a future non-invasive strategy to predict ICI response in advanced NSCLC. Frontiers Media S.A. 2023-07-20 /pmc/articles/PMC10400292/ /pubmed/37546399 http://dx.doi.org/10.3389/fonc.2023.1196414 Text en Copyright © 2023 Tonneau, Phan, Manem, Low-Kam, Dutil, Kazandjian, Vanderweyen, Panasci, Malo, Coulombe, Gagné, Elkrief, Belkaïd, Di Jorio, Orain, Bouchard, Muanza, Rybicki, Kafi, Huntsman, Joubert, Chandelier and Routy https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Tonneau, Marion Phan, Kim Manem, Venkata S. K. Low-Kam, Cecile Dutil, Francis Kazandjian, Suzanne Vanderweyen, Davy Panasci, Justin Malo, Julie Coulombe, François Gagné, Andréanne Elkrief, Arielle Belkaïd, Wiam Di Jorio, Lisa Orain, Michele Bouchard, Nicole Muanza, Thierry Rybicki, Frank J. Kafi, Kam Huntsman, David Joubert, Philippe Chandelier, Florent Routy, Bertrand Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study |
title | Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study |
title_full | Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study |
title_fullStr | Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study |
title_full_unstemmed | Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study |
title_short | Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study |
title_sort | generalization optimizing machine learning to improve ct scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400292/ https://www.ncbi.nlm.nih.gov/pubmed/37546399 http://dx.doi.org/10.3389/fonc.2023.1196414 |
work_keys_str_mv | AT tonneaumarion generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT phankim generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT manemvenkatask generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT lowkamcecile generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT dutilfrancis generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT kazandjiansuzanne generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT vanderweyendavy generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT panascijustin generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT malojulie generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT coulombefrancois generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT gagneandreanne generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT elkriefarielle generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT belkaidwiam generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT dijoriolisa generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT orainmichele generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT bouchardnicole generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT muanzathierry generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT rybickifrankj generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT kafikam generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT huntsmandavid generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT joubertphilippe generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT chandelierflorent generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy AT routybertrand generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy |