Cargando…

Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study

BACKGROUND: Recent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations...

Descripción completa

Detalles Bibliográficos
Autores principales: Tonneau, Marion, Phan, Kim, Manem, Venkata S. K., Low-Kam, Cecile, Dutil, Francis, Kazandjian, Suzanne, Vanderweyen, Davy, Panasci, Justin, Malo, Julie, Coulombe, François, Gagné, Andréanne, Elkrief, Arielle, Belkaïd, Wiam, Di Jorio, Lisa, Orain, Michele, Bouchard, Nicole, Muanza, Thierry, Rybicki, Frank J., Kafi, Kam, Huntsman, David, Joubert, Philippe, Chandelier, Florent, Routy, Bertrand
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400292/
https://www.ncbi.nlm.nih.gov/pubmed/37546399
http://dx.doi.org/10.3389/fonc.2023.1196414
_version_ 1785084411395440640
author Tonneau, Marion
Phan, Kim
Manem, Venkata S. K.
Low-Kam, Cecile
Dutil, Francis
Kazandjian, Suzanne
Vanderweyen, Davy
Panasci, Justin
Malo, Julie
Coulombe, François
Gagné, Andréanne
Elkrief, Arielle
Belkaïd, Wiam
Di Jorio, Lisa
Orain, Michele
Bouchard, Nicole
Muanza, Thierry
Rybicki, Frank J.
Kafi, Kam
Huntsman, David
Joubert, Philippe
Chandelier, Florent
Routy, Bertrand
author_facet Tonneau, Marion
Phan, Kim
Manem, Venkata S. K.
Low-Kam, Cecile
Dutil, Francis
Kazandjian, Suzanne
Vanderweyen, Davy
Panasci, Justin
Malo, Julie
Coulombe, François
Gagné, Andréanne
Elkrief, Arielle
Belkaïd, Wiam
Di Jorio, Lisa
Orain, Michele
Bouchard, Nicole
Muanza, Thierry
Rybicki, Frank J.
Kafi, Kam
Huntsman, David
Joubert, Philippe
Chandelier, Florent
Routy, Bertrand
author_sort Tonneau, Marion
collection PubMed
description BACKGROUND: Recent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations in image acquisition and reconstruction. Using radiomics, we investigated the importance of scan normalization as part of a broader machine learning framework to enable model external generalizability to predict ICI response in non-small cell lung cancer (NSCLC) patients across different centers. METHODS: Radiomics features were extracted and compared from 642 advanced NSCLC patients on pre-ICI scans using established open-source PyRadiomics and a proprietary DeepRadiomics deep learning technology. The population was separated into two groups: a discovery cohort of 512 NSCLC patients from three academic centers and a validation cohort that included 130 NSCLC patients from a fourth center. We harmonized images to account for variations in reconstruction kernel, slice thicknesses, and device manufacturers. Multivariable models, evaluated using cross-validation, were used to estimate the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or DeepRadiomics for progression-free survival at 6 months (PFS-6). RESULTS: The best prognostic factor for PFS-6, excluding radiomics features, was obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the discovery and 0.62 in the validation cohort). Without image harmonization, combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69 and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in the validation cohort. This lack of generalizability was consistent with observations in principal component analysis clustered by CT scan parameters. Subsequently, image harmonization eliminated these clusters. The combination of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery and validation cohort, respectively. Conversely, the combination of Clinical + PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59. CONCLUSION: We demonstrated that a risk prediction model combining Clinical + DeepRadiomics was generalizable following CT scan harmonization and machine learning generalization methods. These results had similar performances to routine oncology practice using Clinical + PD-L1. This study supports the strong potential of radiomics as a future non-invasive strategy to predict ICI response in advanced NSCLC.
format Online
Article
Text
id pubmed-10400292
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-104002922023-08-04 Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study Tonneau, Marion Phan, Kim Manem, Venkata S. K. Low-Kam, Cecile Dutil, Francis Kazandjian, Suzanne Vanderweyen, Davy Panasci, Justin Malo, Julie Coulombe, François Gagné, Andréanne Elkrief, Arielle Belkaïd, Wiam Di Jorio, Lisa Orain, Michele Bouchard, Nicole Muanza, Thierry Rybicki, Frank J. Kafi, Kam Huntsman, David Joubert, Philippe Chandelier, Florent Routy, Bertrand Front Oncol Oncology BACKGROUND: Recent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations in image acquisition and reconstruction. Using radiomics, we investigated the importance of scan normalization as part of a broader machine learning framework to enable model external generalizability to predict ICI response in non-small cell lung cancer (NSCLC) patients across different centers. METHODS: Radiomics features were extracted and compared from 642 advanced NSCLC patients on pre-ICI scans using established open-source PyRadiomics and a proprietary DeepRadiomics deep learning technology. The population was separated into two groups: a discovery cohort of 512 NSCLC patients from three academic centers and a validation cohort that included 130 NSCLC patients from a fourth center. We harmonized images to account for variations in reconstruction kernel, slice thicknesses, and device manufacturers. Multivariable models, evaluated using cross-validation, were used to estimate the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or DeepRadiomics for progression-free survival at 6 months (PFS-6). RESULTS: The best prognostic factor for PFS-6, excluding radiomics features, was obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the discovery and 0.62 in the validation cohort). Without image harmonization, combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69 and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in the validation cohort. This lack of generalizability was consistent with observations in principal component analysis clustered by CT scan parameters. Subsequently, image harmonization eliminated these clusters. The combination of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery and validation cohort, respectively. Conversely, the combination of Clinical + PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59. CONCLUSION: We demonstrated that a risk prediction model combining Clinical + DeepRadiomics was generalizable following CT scan harmonization and machine learning generalization methods. These results had similar performances to routine oncology practice using Clinical + PD-L1. This study supports the strong potential of radiomics as a future non-invasive strategy to predict ICI response in advanced NSCLC. Frontiers Media S.A. 2023-07-20 /pmc/articles/PMC10400292/ /pubmed/37546399 http://dx.doi.org/10.3389/fonc.2023.1196414 Text en Copyright © 2023 Tonneau, Phan, Manem, Low-Kam, Dutil, Kazandjian, Vanderweyen, Panasci, Malo, Coulombe, Gagné, Elkrief, Belkaïd, Di Jorio, Orain, Bouchard, Muanza, Rybicki, Kafi, Huntsman, Joubert, Chandelier and Routy https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Tonneau, Marion
Phan, Kim
Manem, Venkata S. K.
Low-Kam, Cecile
Dutil, Francis
Kazandjian, Suzanne
Vanderweyen, Davy
Panasci, Justin
Malo, Julie
Coulombe, François
Gagné, Andréanne
Elkrief, Arielle
Belkaïd, Wiam
Di Jorio, Lisa
Orain, Michele
Bouchard, Nicole
Muanza, Thierry
Rybicki, Frank J.
Kafi, Kam
Huntsman, David
Joubert, Philippe
Chandelier, Florent
Routy, Bertrand
Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_full Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_fullStr Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_full_unstemmed Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_short Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_sort generalization optimizing machine learning to improve ct scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400292/
https://www.ncbi.nlm.nih.gov/pubmed/37546399
http://dx.doi.org/10.3389/fonc.2023.1196414
work_keys_str_mv AT tonneaumarion generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT phankim generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT manemvenkatask generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT lowkamcecile generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT dutilfrancis generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT kazandjiansuzanne generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT vanderweyendavy generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT panascijustin generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT malojulie generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT coulombefrancois generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT gagneandreanne generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT elkriefarielle generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT belkaidwiam generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT dijoriolisa generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT orainmichele generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT bouchardnicole generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT muanzathierry generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT rybickifrankj generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT kafikam generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT huntsmandavid generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT joubertphilippe generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT chandelierflorent generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT routybertrand generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy