Cargando…

LegNet: a best-in-class deep learning model for short DNA regulatory regions

MOTIVATION: The increasing volume of data from high-throughput experiments including parallel reporter assays facilitates the development of complex deep-learning approaches for modeling DNA regulatory grammar. RESULTS: Here, we introduce LegNet, an EfficientNetV2-inspired convolutional network for...

Descripción completa

Detalles Bibliográficos
Autores principales: Penzar, Dmitry, Nogina, Daria, Noskova, Elizaveta, Zinkevich, Arsenii, Meshcheryakov, Georgy, Lando, Andrey, Rafi, Abdul Muntakim, de Boer, Carl, Kulakovskiy, Ivan V
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400376/
https://www.ncbi.nlm.nih.gov/pubmed/37490428
http://dx.doi.org/10.1093/bioinformatics/btad457
_version_ 1785084431340404736
author Penzar, Dmitry
Nogina, Daria
Noskova, Elizaveta
Zinkevich, Arsenii
Meshcheryakov, Georgy
Lando, Andrey
Rafi, Abdul Muntakim
de Boer, Carl
Kulakovskiy, Ivan V
author_facet Penzar, Dmitry
Nogina, Daria
Noskova, Elizaveta
Zinkevich, Arsenii
Meshcheryakov, Georgy
Lando, Andrey
Rafi, Abdul Muntakim
de Boer, Carl
Kulakovskiy, Ivan V
author_sort Penzar, Dmitry
collection PubMed
description MOTIVATION: The increasing volume of data from high-throughput experiments including parallel reporter assays facilitates the development of complex deep-learning approaches for modeling DNA regulatory grammar. RESULTS: Here, we introduce LegNet, an EfficientNetV2-inspired convolutional network for modeling short gene regulatory regions. By approaching the sequence-to-expression regression problem as a soft classification task, LegNet secured first place for the autosome.org team in the DREAM 2022 challenge of predicting gene expression from gigantic parallel reporter assays. Using published data, here, we demonstrate that LegNet outperforms existing models and accurately predicts gene expression per se as well as the effects of single-nucleotide variants. Furthermore, we show how LegNet can be used in a diffusion network manner for the rational design of promoter sequences yielding the desired expression level. AVAILABILITY AND IMPLEMENTATION: https://github.com/autosome-ru/LegNet. The GitHub repository includes Jupyter Notebook tutorials and Python scripts under the MIT license to reproduce the results presented in the study.
format Online
Article
Text
id pubmed-10400376
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-104003762023-08-05 LegNet: a best-in-class deep learning model for short DNA regulatory regions Penzar, Dmitry Nogina, Daria Noskova, Elizaveta Zinkevich, Arsenii Meshcheryakov, Georgy Lando, Andrey Rafi, Abdul Muntakim de Boer, Carl Kulakovskiy, Ivan V Bioinformatics Original Paper MOTIVATION: The increasing volume of data from high-throughput experiments including parallel reporter assays facilitates the development of complex deep-learning approaches for modeling DNA regulatory grammar. RESULTS: Here, we introduce LegNet, an EfficientNetV2-inspired convolutional network for modeling short gene regulatory regions. By approaching the sequence-to-expression regression problem as a soft classification task, LegNet secured first place for the autosome.org team in the DREAM 2022 challenge of predicting gene expression from gigantic parallel reporter assays. Using published data, here, we demonstrate that LegNet outperforms existing models and accurately predicts gene expression per se as well as the effects of single-nucleotide variants. Furthermore, we show how LegNet can be used in a diffusion network manner for the rational design of promoter sequences yielding the desired expression level. AVAILABILITY AND IMPLEMENTATION: https://github.com/autosome-ru/LegNet. The GitHub repository includes Jupyter Notebook tutorials and Python scripts under the MIT license to reproduce the results presented in the study. Oxford University Press 2023-07-25 /pmc/articles/PMC10400376/ /pubmed/37490428 http://dx.doi.org/10.1093/bioinformatics/btad457 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Penzar, Dmitry
Nogina, Daria
Noskova, Elizaveta
Zinkevich, Arsenii
Meshcheryakov, Georgy
Lando, Andrey
Rafi, Abdul Muntakim
de Boer, Carl
Kulakovskiy, Ivan V
LegNet: a best-in-class deep learning model for short DNA regulatory regions
title LegNet: a best-in-class deep learning model for short DNA regulatory regions
title_full LegNet: a best-in-class deep learning model for short DNA regulatory regions
title_fullStr LegNet: a best-in-class deep learning model for short DNA regulatory regions
title_full_unstemmed LegNet: a best-in-class deep learning model for short DNA regulatory regions
title_short LegNet: a best-in-class deep learning model for short DNA regulatory regions
title_sort legnet: a best-in-class deep learning model for short dna regulatory regions
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400376/
https://www.ncbi.nlm.nih.gov/pubmed/37490428
http://dx.doi.org/10.1093/bioinformatics/btad457
work_keys_str_mv AT penzardmitry legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions
AT noginadaria legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions
AT noskovaelizaveta legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions
AT zinkevicharsenii legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions
AT meshcheryakovgeorgy legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions
AT landoandrey legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions
AT rafiabdulmuntakim legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions
AT deboercarl legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions
AT kulakovskiyivanv legnetabestinclassdeeplearningmodelforshortdnaregulatoryregions